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1 Introduction

Since Mandelbrot (in particular 1977, 1982, and 1997) developed and popu-

larized the concept of fractals and multifractals, and advocated their use in

the explanation of observed features of time series arising in natural sciences,

there has been ongoing interest by researchers in a variety of disciplines in

widening their application.
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The paradigm option pricing formula of Black and Scholes (discovered in

1973), and the ensuing arbitrage-free methodology which it has engendered,

has occupied a central place in asset-liability management, theory and prac-

tice. While the underlying geometric Brownian motion (GBM) model of

their formula surely captured the essence of option pricing, three decades

of econometric investigation have shown that the model departs from the

realities of risky asset price and risky asset returns (increments in log-price)

data in quite a number of important ways. The empirical characteristics of

historical returns data such as; little or no correlation but evidence of some

dependence, and a marginal distribution with higher peaks and heavier tails

than Gaussian are universally accepted (see Granger (2005)) and has led to

invalidation.

It has been shown, see for example Schmitt et al (1999), Calvet and Fisher

(2002), how, through the use of fractals (in particular, multifractals) in a

finance setting, how one can too remedy some of the empirically established

and occasionally puzzling shortcomings of the original option pricing model.

In this paper we are going to discuss a class of multifractal models originally

introduced by Anh et al (2008) and show they provide a useful and flexible

family of models for applications.

We will give a short description of the main features of fractals and multi-

fractals in the next section. Section 3 will introduce an alternative model to

the classical GBM model, and show that we can incorporate multiscaling. In

section 4 we equip the model with a multifractal process construction based

on the products of geometric Ornstein-Uhlenbeck (OU) processes. We then

consider five cases of infinitely divisible distributions for the background driv-

ing process including their Rényi function and dependence structure. Section

5 shows empirical evidence that multifractality exists for real financial data

through the nonlinear nature of the scaling function. We then validate this

new approach by testing the fit of the model (Rényi function) to the data

(scaling function).

2



2 Multifractals

There are two main models for fractals that occur in nature. Generally speak-

ing, fractals are either statistically self-similar or they are multifractals.

Multifractals were introduced in Mandelbrot (1972) as measures to model

turbulence. The concept was extended in Mandelbrot et al. (1997) to

stochastic processes as a generalisation of self-similar stochastic processes.

The definition of a multifractal is motivated by that of a stochastic process

Xt which satisfies a relationship of the form

{X(ct)} d
= {M(c)X(t)}, t ≥ 0 (2.1)

for positive 0 < c < 1 where M is a random variable independent of X and

equality is in finite-dimensional distributions.

In the special case M(c) = cH , the multifractal reduces to a self-similar

fractal where the parameter 0 < H < 1 is known as the Hurst parameter

named after the British engineer Harold Hurst (whose work on Nile river data

played an important role in the development of self-similar processes). For

a more detailed review of self-similar processes see Embrechts and Maejima

(2002).

It is assumed further that

M(ab) =M1(a)M2(b), a, b > 0,

where M1 and M2 are independent random variables with common distribu-

tion M .

The actual definition of a multifractal process, as given in Mandelbrot et

al. (1997), is defined in terms of the moments of the process and includes

processes satisfying (2.1):
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A stochastic process X(t) is multifractal if it has stationary increments and

there exist functions c(q) and τ(q) and positive constants Q and T such that

∀qϵQ = [q−, q+],∀tϵ[0, T ],

E(|X(t)|q) d
= c(q)tτ(q)+1, (2.2)

where τ(q) and c(q) are both deterministic functions of q. τ(q) is called the

scaling function and takes into account the influence of the time t on the

moments q, and c(q) is called the prefactor.

While this definition is the standard definition of a multifractal process most

processes studied as multifractals only obey it for particular values of t or

sometimes for asymptotically small t. The condition of stationary increments

is also quite often relaxed.

Conversely, Taqqu et al (1997) tests the scaling properties of the increments

of X(t) instead of the process itself. If this method is used then the subtrac-

tion of the mean E(X(t + 1) − X(t)) to X(t + 1) − X(t) may be required

to ensure a fair investigation, because such a stationary process cannot be

self-similar or even asymptotically self-similar if it has non-zero mean. For

our case, we find that E(X(t+ 1)−X(t)) = 0 for each of our data sets.

It follows from (2.2) that

logE(|X(t)|q) = log c(q) + (τ(q) + 1) log t

and so X(t) is multifractal if for each q ∈ Q, logE|X(t)|q scales linearly with

log t and the slope is τ(q) + 1. This will become the primary test used to

determine if a process is multifractal.

To explain the notion of the scaling function τ(q), consider the particular

case of the fractional Brownian motion- a self-similar process. A fractional

Brownian motion, with a Hurst exponent H, satisfies

X(t)
d
= tHX(1),
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which implies that

E(|X(t)|q) d
= tHqE(|X(1)|q).

Here we obtain the prefactor

c(q) = E(|X(1)|q),

and the scaling function

τ(q) = Hq − 1.

So the scaling function is linear if the process is self-similar. Alternatively,

the process is multifractal if it has the multiscaling properties that imply

nonlinearity of the scaling function.

Mandelbrot et al. (1997) showed that the scaling function is concave for

all multifractals with the following argument. Let ω1, ω2 be positive weights

with ω1+ω2 = 1 and let 0 ≤ q1, q2 ≤ q+ and q = q1ω1+q2ω2. Then by Hölder

inequality

E|X(t)|q ≤ (E|X(t)|q1)ω1(E|X(t)|q2)ω2

and so

log c(q) + τ(q) log t ≤ (ω1τ(q1) + ω2τ(q2)) log t+ (ω1 log c(q1) + ω2 log c(q2))

Letting t go to zero we have τ(q) ≥ ω1τ(q1) + ω2τ(q2) so τ is concave. If

T = ∞ we can let t go to ∞ and we get the reverse inequality τ(q) ≤
ω1τ(q1)+ω2τ(q2). It follows that T = ∞ implies that τ is linear and so X(t)

is self-similar.

An important associated concept is the multifractal spectrum. It is the

Legendre transform of the scaling function τ(q) and is given by

f(α) = inf
q
[qα− τ(q)].
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where it is defined. For self-similar processes it is only defined at H with

f(H)=1. The multifractal spectrum plays an important role in multifractal

measures where it represents the fractal dimensions of sets where the mea-

sure has certain limiting intensities. The analogous definition for multifractal

processes is the dimension of sets with local Hölder exponent α (see Calvet

et al. (1997) for details). However, for multifractal processes the multifractal

spectrum is only used as a tool for fitting the model to data.

The motivating example of a multifractal process is the cascade. They were

first introduced as measures in Mandelbrot (1974) and can be defined on the

interval [0, 1] as follows. Define a sequence of random measures µn by

µn(dt) =
n∏

i=1

Mη1,η2,...,ηi(dt)

where t has expansion t = 0.η1η2 . . . in base b and the Mη1,η2,...,ηi are a col-

lection of positive iid random variables with distribution M where EM = 1.

Kahane and Peyrière (1976) showed that the almost sure vague limit of µn ex-

ists, denoted as µ. The stochastic process X(t) is defined as X(t) = µ([0, t]).

It is easy to check that (2.2) holds when t = b−n. Of course X(t) does not

fully satisfy the definition of a multifractal as equation (2.2) does not hold

except when t is of the form b−n and X(t) does not even have stationary

increments. Even though cascades do not satisfy the formal definition they

remain the prototype model for multifractal processes.

Multifractals overcome an important limitation of self-similar stochastic pro-

cesses which is they can be positive and still have finite mean as in the case

of cascades. When X(t) is positive and EX(1) < ∞ equation (2.2) implies

that τ(1) = 0.
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3 The Risky Asset Model

This section investigates the scaling behaviour of two models for the price

of risky assets like equities, indices, foreign exchange, commodities etc. For

the remainder of the paper, let P (t) be the price of a risky asset and time

t, and the corresponding log-price process be given by {Y (t) = logP (t) −
logP (0), 0 ≤ t ≤ T}.

Under the GBM model (Black and Scholes (1973)), with zero drift term,

Y (t) = σB(t), t ≥ 0,

where σ > 0 is a fixed constant and {B(t), t ≥ 0} is a standard Brownian

motion which is self-similar with H = 1
2
. By the scaling property of standard

Brownian motion

E(|Y (t)|q) d
= t

q
2E(|σB(1)|q)

= t
q
2 (
√
2σ2)q

Γ(1+q
2
)

√
π

, q ≥ 0.

Note here that the scaling function τY (q) =
q
2
− 1, q ≥ 0 is linear.

A subordinator model based on fractal activity time was first introduced

in Heyde (1999) with the primary aim to encompass the empirically found

characteristics of financial data. Under this model, again with zero drift,

Y (t) = σB(A(t)), t ≥ 0 (3.1)

where σ > 0 is a fixed constant, and {B(t), t ≥ 0} is a standard (or could be

extended to fractional, see various authors including Mandelbrot et al. (1997)

and Elliott and Van Der Hoek (2003)) Brownian motion and {A(t)} is a ran-

dom process that is independent of {B(t)}. Here {A(t)} is a nondecreasing

stochastic process with stationary (but not necessarily independent) incre-

ments which models the underlying market activity time rather than “clock
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time”. We assume that EAt = t and so as t goes to infinity it follows from

the ergodic theorem that 1
t
At → 1 almost surely. For a discussion of subor-

dinator models see Rachev and Mittnik (2000).

From Heyde (1999) and Heyde and Liu (2001), sufficient empirical evidence

exists to suggest that {A(t) − t} is asymptotically self-similar. By further

investigation, it has been proved in Heyde and Leonenko (2005) that {A(t)}
itself cannot be self-similar. Clearly, if {A(t), t ≥ 0} is a multifractal process

with scaling function τA(q), by (2.2),

E(|Y (t)|q) d
= EA(t)

q
2E(|σB(1)|q)

d
= cA(

q

2
)tτA( q

2
)+1E(|σB(1)|q).

= cA(
q

2
)tτA( q

2
)+1(

√
2σ2)q

Γ(1+q
2
)

√
π

, q ≥ 0. (3.2)

So the scaling function is given by

τY (q) = τA(
q

2
), q ≥ 0,

and this leads us directly to the following empirical test:

• if the scaling function τ(q) is linear then the process is self-similar.

• if the scaling function τ(q) is non-linear then the process is multifractal

(always concave).

4 Constructing the Multifractal Process

Models with multifractal scaling have been used in many applications in hy-

drodynamic turbulence, genomics, computer network traffic, etc. (see Kol-

mogorov (1941, 1962), Gupta and Waymire (1993), Novikov (1994), Frisch

(1995), Anh et al (2001)). The application to finance was first investigated

by Mandelbrot et al (1997), where it is established that most multifractal
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models are not designed to cover important features of financial data, such

as a tractable dependence structure.

To surmount these problems, Anh et al (2008) considered multifractal prod-

ucts of stochastic processes as defined in Kahane (1985, 1987) and Manner-

salo et al (2002). These multifractals are based on products of geometric

Ornstein-Uhlenbeck processes driven by Lévy motion were constructed, and

several cases of infinitely divisible distributions for the background driving

Lévy process are studied. The behaviour of the q-th order moments and

Rényi functions were found to be nonlinear, hence displaying the multifrac-

tality as required. We will replicate this methodology and look to integrate

this construction into the model (3.1).

4.1 Multifractal products of stochastic processes

We begin by recapturing some basic results on multifractal products of

stochastic processes as developed in Kahane (1985, 1987) and Mannersalo

et al (2002). The following conditions hold:

C1 Let Λ(t), t ∈ R+ = [0,∞), be a measurable, separable, strictly sta-

tionary, positive stochastic process with EΛ(t) = 1.

We call this process the mother process and consider the following setting:

C2 Let Λ(i), i = 0, 1, ... be independent copies of the mother process Λ,

and Λ
(i)
b be the rescaled version of Λ(i)

Λ
(i)
b (t)

d
= Λ(i)(tbi), t ∈ R+, i = 0, 1, 2, . . . ,

where the scaling parameter b > 1.

C3 For t ∈ R+, let Λ(t) = exp{X(t)}, where X (t) is a stationary pro-

cess with EX2(t) <∞.
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We denote by θ ∈ Θ ⊆ Rp, p > 1 the parameter vector of the distribution of

the process X (t) and assume that there exist a marginal probability density

function pθ(x) and a bivariate probability density function pθ(x1, x2; t1 − t2)

such that the moment generating function

M(ζ) = E exp{ζX(t)}

and the bivariate moment generating function

M(ζ1, ζ2; t1 − t2) = E exp{ζ1X(t1) + ζ2X(t2)}

exist.

The conditions C1-C3 yield

EΛ
(i)
b (t) = M(1) = 1;

VarΛ
(i)
b (t) = M(2)− 1 = σ2

Λ <∞;

Cov(Λ
(i)
b (t1),Λ

(i)
b (t2)) =M(1, 1; (t1 − t2)b

i)− 1, b > 1.

We define the finite product processes

Λn(t) =
n∏

i=0

Λ
(i)
b (t) = exp

{
n∑

i=0

X(tbi)

}
, (4.1)

and the cumulative processes

An(t) =

∫ t

0

Λn(s)ds, n = 0, 1, 2, . . . (4.2)

We also consider the corresponding positive random measures defined on

Borel sets B of R+

µn(B) =

∫
B

Λn(s)ds, n = 0, 1, 2, . . . (4.3)

Kahane (1987) proved that the sequence of random measures µn converges

weakly almost surely to a random measure µ. Moreover, given a finite or
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countable family of Borel sets Bj on R+, it holds that limn→∞ µn(Bj) = µ(Bj)

for all j with probability one. The almost sure convergence of An (t) in count-

ably many points of R+ can be extended to all points in R+ if the limit

process A (t) is almost surely continuous. In this case, limn→∞An(t) = A(t)

with probability one for all t ∈ R+. As noted in Kahane (1987), there are two

extreme cases: (i) An(t) → A(t) in L1 for each given t, in which case A(t)

is not almost surely zero and is said to be fully active (non-degenerate) on

R+; (ii) An(1) converges to 0 almost surely, in which case A(t) is said to be

degenerate on R+. Sufficient conditions for non-degeneracy and degeneracy

in a general situation and relevant examples are provided in Kahane (1987).

The Rényi function, also known as the deterministic partition function, is

defined for t ∈ [0, 1] as

R(q) = lim inf
n→∞

log E
∑2n−1

k=0 µq
(
I
(n)
k

)
log

∣∣∣I(n)k

∣∣∣
= lim inf

n→∞

(
− 1

n

)
log2 E

2n−1∑
k=0

µq
(
I
(n)
k

)
,

where I
(n)
k = [k2−n, (k + 1)2−n] , k = 0, 1, . . . , 2n−1,

∣∣∣I(n)k

∣∣∣ is its length, and
logb is log to the base b.

Mannersalo et al. (2002) presented the conditions for L2-convergence and

scaling of moments:

Theorem 1

Suppose that the conditions C1-C3 hold.

If, for some positive numbers δ and γ,

exp {−δ |τ |} 6 ρ(τ) =
M(1, 1; τ)− 1

M(2)− 1
6 |Cτ |−γ , (4.4)
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then An(t) converges in L2 if and only if

b > 1 + σ2
Λ =M(2).

If An(t) converges in L2, then the limit process A(t) satisfies the recursion

A(t) =
1

b

∫ t

0

Λ(s)dÃ(bs), (4.5)

where the processes Λ (t) and Ã (t) are independent, and the processes A (t)

and Ã (t) have identical finite-dimensional distributions.

If A (t) is non-degenerate, the recursion (4.5) holds, A(1) ∈ Lq for some

q > 0, and
∑∞

n=0 c(q, b
−n) < ∞, where c(q, t) = E sups∈[0,t] |Λq(0)− Λq(s)| ,

then there exist constants C and C such that

Ctq−logb EΛ
q(t) 6 EAq(t) 6 Ctq−logb EΛ

q(t), (4.6)

which will be written as

EAq(t) ∼ tq−logb EΛ
q(t), t ∈ [0, 1].

If, on the other hand, A(1) ∈ Lq, q > 1, then the Rényi function is given by

R(q) = q − 1− logb EΛ
q (t) = q − 1− logbM(q).

If A (t) is non-degenerate, A(1) ∈ L2, and Λ (t) is positively correlated, then

VarA(t) > Var

∫ t

0

Λ(s)ds.

Hence, if
∫ t

0
Λ(s)ds is strongly dependent, then A (t) is also strongly depen-

dent.

4.2 Ornstein-Uhlenbeck type processes

We recall some definitions and known results on Lévy processes (Skorokhod

1991, Bertoin 1996, Sato 1999, Kyprianou 2006) and Ornstein-Uhlenbeck
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type processes (Barndorff-Nielsen 2001, Barndorff-Nielsen and Shephard 2001)

which are needed to construct a class of multifractal processes.

A random variable X is said to be infinitely divisible if its cumulant function

has the Lévy-Khintchine form

C {z;X} = iaz − d

2
z2 +

∫
R

(
eizu − 1− izu1[−1,1] (u)

)
ν (du) , (4.7)

where a ∈ R, d ≥ 0 and ν is the Lévy measure, that is, a non-negative

measure on R such that

ν ({0}) = 0,

∫
R
min

(
1, u2

)
ν (du) <∞.

The triplet (a, d, ν) uniquely determines the random variable X. For a Gaus-

sian random variable X ∼ N (a, d) , the Lévy triplet takes the form (a, d, 0) .

If X is self-decomposable, then there exists a stationary stochastic process

{X (t) , t ≥ 0}, such that X (t)
d
= X and

X (t) = e−λtX (0) +

∫
(0,t]

e−λ(t−s)dZ̀ (λs) (4.8)

for all λ > 0 (see Barndorff-Nielsen 1998). Conversely, if {X (t) , t ≥ 0}
is a stationary process and

{
Z̀ (t) , t ≥ 0

}
is a Lévy process, independent of

X (0) , such thatX (t) and Z̀ (t) satisfy the Itô stochastic differential equation

dX (t) = −λX (t) dt+ dZ̀ (λt) (4.9)

for all λ > 0, then X (t) is self-decomposable. A stationary process X (t) of

this kind is said to be an Ornstein-Uhlenbeck type process or an OU-type

process, for short. The process Z̀ (t) is termed the background driving Lévy

process corresponding to the process X (t) . In fact (4.8) is the unique (up to

indistinguishability) strong solution to Eq. (4.9) (Sato 1999).

If X (t) is a square integrable OU process, it has the correlation function

rX (t) = exp {−λ |t|} , t ∈ R.
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The following result is needed in the construction of mutifractal processes

from OU-type processes:

Theorem 2

Let X(t), t ∈ [0, 1] be an OU type stationary process (4.8) such that the Lévy

measure ν in (4.7) of the random variable X(t) satisfies the condition that

for some range of q ∈ R, ∫
|x|≥1

gq(x)ν(dx) <∞,

where gq(x) denotes any of the functions e2qx, eqx, eqx|x|. Then, for the geo-

metric OU type process Λq(t) := eqX(t),

∞∑
n=0

c(q, b−n) <∞,

where c(q, t) = E sups∈[0,t] |Λq(0)
q − Λq(s)

q| .

The proof of Theorem 2 is given in Anh, Leonenko and Shieh (2008). To

prove that a geometric OU-type process satisfies the covariance decay con-

dition (4.4) in Theorem 1, the following proposition gives a general decay

estimate which the driving Lévy processes Z in the next subsection indeed

satisfy:

Consider the stationary OU-type process X defined by

dX(t) = −λX(t)dt+ dZ(λt),

which has a stationary distribution π(x) such that, for some a > 0,∫
|x|a π(dx) <∞. (4.10)

Then there exist positive constants c and C such that

Cov
(
eX(t), eX(0)

)
≤ Ce−ct (4.11)
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for all t > 0.

Masuda (2004) showed that, under the assumption (4.10), the stationary pro-

cessX(t) satisfies the β−mixing condition with coefficient βX(t) = O(e−ct), t >

0. Note that this is also true for the stationary process eX(t), since the

σ−algebras generated by these two processes are equivalent. Hence,

βeX (t) = O(e−ct), t > 0.

It then follows that

Cov
(
eX(t), eX(0)

)
≤ const× βeX (t) ≤ Ce−ct

(see Billingsley 1968).

4.3 Multifractal products of OU-type processes

In this section the results discussed in the previous sections are used to

construct multifractal processes. The mother process of assumption C1 will

take the form

Λ(t) = exp {X (t)− cX} , (4.12)

where X (t) is a stationary OU type process (4.9) and cX is a constant de-

pending on the parameters of its marginal distribution such that EΛ (t) = 1.

All the definitions given in (4.1) - (4.3) and correspondingly all the state-

ments of Theorem 1 are now understood to be in terms of the mother process

(4.12). At this point however it is convenient to introduce separate notations

for the moment generating function of Λ, which we denote byMΛ(·), and the

moment generating function of X, which we denote by M(·). Thus

MΛ (z) = E exp (z (X (t)− cX)) = exp{−zcX}M(z)

and

MΛ (z1, z2; (t1 − t2)) = E exp{z1 (X(t1)− cX) + z2 (X(t2)− cX)}
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= exp{−cX (z1 + z2)}M (z1, z2; (t1 − t2)) .

The correlation function of the mother process Λ then takes the form

ρ(τ) =
MΛ(1, 1; τ)− 1

MΛ(2)− 1
.

The constant cX (when it exists) can be obtained as

cX = log EeX(t) = logM(1).

Accordingly, in view of (4.6), the Rényi function is obtained as

R (q) = q

(
1 +

logM(1)

log b

)
− logM(q)

log b
− 1.

Example (The log-gamma scenario)

We will use a stationary OU-type process with marginal gamma distribution

Γ(β, α), which is self-decomposable, and, hence, infinitely divisible. The

probability density function (pdf) of X(t), t ∈ R+, is given by

π(X) =
αβ

Γ(β)
xβ−1e−αx1[0,∞)(x), α > 0, β > 0, (4.13)

with the Lévy triplet of the form (0, 0, ν), where

ν(du) =
βe−αu

u
1[0,∞)(u)du,

while the Lévy process Z̀(t) in (4.9) is a compound Poisson subordinator

Z̀(t) =

P (t)∑
n=1

Zn,

with the Zn, n = 1, 2, . . . , being independent copies of the random variable

Γ(1, α) and P (t), t ≥ 0, being a homogeneous Poisson process with intensity

β. The logarithm of the characteristic function of Z̀(1) is

κ(z) = logEeizZ̀(1) =
iβz

α− iz
, z ∈ R,
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and the (finite) Lévy measure ν̃ of Z̀(1) is

ν̃(du) = αβe−αu1[0,∞)(u)du.

C4 Consider a mother process of the form

Λ(t) = eX(t)−cX with cX = log
1

(1− 1
α
)β

and α > 1,

where X(t), t ∈ R+, is a stationary gamma OU-type stochastic process with

marginal density (4.13) and covariance function

rX(t) =
β

α2
e−λ|t|, t ∈ R.

From the discussion above it follows that Theorem 1 and Theorem 2 and

(4.11) can be applied to this setting to yield the following

Theorem 3

Suppose that condition C4 holds, and let Q = {q : 0 < q < α, α > 2}. Then,
for any b > e−2cX (1 − 2α)−β, β > 0, the stochastic processes An(t) defined

by (4.2) converge in L2 to the stochastic process A(t) as n → ∞ such that,

if A(1) ∈ Lq for q ∈ Q,

EA(t)q ∼ tR(q)+1,

where the Rényi function is given by

R(q) = q(1 +
1

log b
log

1

(1− 1
α
)β
) +

β

log b
log(1− q

α
)− 1, q ∈ Q.

Example (The log-inverse Gaussian scenario)

We will use a stationary OU-type process with marginal inverse Gaussian dis-

tribution IG(δ, γ), which is self-decomposable and, hence, infinitely divisible.

The pdf of X(t), t ∈ R+, is given by

π(x) =
1√
2π

δeδγ

x
3
2

e−( δ
2

x
+γ2x) 1

21[0,∞)(x), δ > 0, γ ≥ 0 (4.14)
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with the Lévy triplet of the form (0, 0, ν), where

ν(du) =
1√
2π

δ

u
3
2

e−
γ2u
2 1[0,∞)(u)du,

while the Lévy process Z̀(t) in (4.9) has the cumulant function

κ(z) = logEeizZ̀(1) =
izδ

γ
√
1− 2iz

γ2

, z ∈ R

that is, the Lévy triplet of Z̀(1) is of the form (0, 0, ν̃), and Z̀(t) is the sum of

two independent Lévy processes: Z̀(t) = Z̀1(t) + Z̀2(t). Here Z̀1(t), t ∈ R+,

is an IG( δ
2
, γ) subodinator with Lévy density

ν̃1(du) =
1

2
√
2π

δ

u
√
u
e−

γ2u
2 1[0,∞)(u)du,

which has infinitely many jumps in bounded time intervals, and Z̀2(t), t ∈ R+,

is a compound Poisson subordinator:

Z̀2(t) =
1

γ2

P (t)∑
n=1

Z2
n,

where the Zn, n = 1, 2, . . . , are independent copies of the standard normal

variable and P (t), t ∈ R+, is a homogeneous Poisson process with intensity
δγ
2
. The (finite) Lévy measure ν̃ of Z̀2(1) can be computed as

ν̃2(du) =
1

2
√
2π

δγ2√
u
e−

γ2u
2 1[0,∞)(u)du.

C5 Consider a mother process of the form

Λ(t) = eX(t)−cX with cX = δ(γ −
√
γ2 − 2) and γ ≥

√
2,

where X(t), t ∈ R+, is a stationary inverse Gaussian OU-type with marginal

density (4.14) and covariance function

rX(t) =
δ

γ3
e−λ|t|, t ∈ R.
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From the discussion above it follows that Theorem 1 and Theorem 2 and

(4.11) can be applied to this setting to yield the following

Theorem 4

Suppose that condition C5 holds, and let Q = {q : 0 < q < γ2

2
, α > 2}.

Then, for any b > e−2cX+δ(γ−
√

γ2−4), the stochastic processes An(t) defined

by (4.2) converge in L2 to the stochastic process A(t) as n → ∞ such that,

if A(1) ∈ Lq for q ∈ Q,

EA(t)q ∼ tR(q)+1,

where the Rényi function is given by

R(q) = q(1 +
δ(γ −

√
γ2 − 2)

log b
) +

δ

log b

√
γ2 − 2q − γδ

log b
− 1, q ∈ Q.

Example (The log-spectrally negative α-stable scenario)

We propose a stationary OU-type process satisfying the Itô stochastic differ-

ential equation

dX (t) = −λX (t) dt+ dZ̀ (λt) ,

for all λ > 0, where {Zt, t ≥ 0} is a càdlàg spectrally negative α-stable

process with 1 < α < 2 and stationary and independent increments.

Due to the absence of positive jumps, Patie (2007) states that it is possible

to extend the characteristic exponent of {Zt} on the negative imaginary line

to derive its Laplace exponent, ψ(z) = Ee−zZ(t) = uα, u ≥ 0. However, as

we are interested in the case where there is an absence of negative jumps,

the logarithm of the characteristic function of Z(1) is

κZ(1)(z) = logEeizZ(1) = (iz)α,

and the (finite) Lévy measure ν̃ of Z(1)

ν̃(du) = cu−α−11(0,∞)(u)du, c > 0.
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The related logarithm of the characteristic function of X is

κX(z) =
1

λ

∫ z

0

κZ(1)(ξ)

ξ
dξ =

(iz)α

αλ
.

C1 Consider a mother process of the form

Λ(t) = eX(t)−cX with cX =
1

αλ
,

where X(t), t ∈ R, is a stationary spectrally negative α-stable OU-type

stochastic process.

All conditions hold for Theorems 1 and 2, so we can now formulate the fol-

lowing:

Theorem 5

Suppose that condition C1 holds, and let Q = {q : q > 0}. Then, for any

b > e−
2α

αλ
− 2

αλ , λ > 0, the stochastic processes An(t) converge in L2 to the

stochastic process A(t) as n→ ∞ such that, if A(1) ∈ Lq for q ∈ Q,

EA(t)q ∼ tR(q)+1,

where the Rényi function is given by

R(q) = q(1 +
1

log b

1

αλ
)− 1

log b

qα

αλ
− 1, q ∈ Q.

In Table 1, all corresponding Rènyi functions, and ranges of q for the L2-

convergence of An to A for the models discussed in this paper, are provided.

For further scenarios and tables for ready reference see Anh et al (2008,

2010).

For q ∈ Q∩ [1, 2], the condition A (1) ∈ Lq, q > 1 follows from the L2 conver-

gence; thus the above results hold at least for this range. For q outside this

range, the condition is still to be verified for the validity of multifractal mo-

ment scaling. However, Anh et al (2010) illustrates that through simulation

experiments, convergence to multifractality should hold for values of q larger

than 2. Hence there is scope for relaxing the condition A(1) ∈ Lq for q = 1, 2.
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Scenario Rényi function

Log-Γ
τ(q) = q(1 + 1

log b
log 1

(1− 1
α
)β
) + β

log b
log(1− q

α
)− 1,

α > 0, β > 0, b > (1− 1
α
)2β(1− 2α)−β,

q ∈ Q = {q : 0 < q < α, α > 2}

Log-IG
τ(q) = q(1 +

δ(γ−
√

γ2−2)

log b
) + δ

log b

√
γ2 − 2q − γδ

log b
− 1,

δ > 0, γ > 0, b > e−δγ+2δ
√

γ2−2−δ
√

γ2−4,

q ∈ Q = {q : 0 < q < γ2

2
, γ ≥ 2}

Log-NIG
τ(q) = q(1 +

δ
√

α2−β2

log b
− δ

√
α2−(1+β)2

log b
) +

δ
√

α2−(q−β)2

log b
− δ

√
α2−β2

log b
− 1,

µ ∈ R, 0 ≤ |β| ≤ α, δ > 0, b > e−δ
√

α2−β2+2δ
√

α2−(β+1)2−δ
√

α2−(β+2)2 ,
q ∈ Q = {q : 0 < q < α− |β|, |β + 2| < α}

Log-TS
τ(q) = q(1 + δ(γ−(γ

1
κ−2)κ)

log b
) + δ

log b
(γ

1
κ − 2q)κ − γδ

log b
− 1,

0 < κ < 1, δ > 0, γ ≥ 0, b > e2δ(γ
1
κ−2)κ−δ(γ

1
κ−4)κ−δγ ,

q ∈ Q = {q : 0 < q < γ
1
κ

2
, γ ≥ 4κ}

Log-SNS
τ(q) = q(1 + 1

log b
1
αλ
)− 1

log b
qα

αλ
− 1,

λ > 0, b > e−
2α

αλ
− 2

αλ ,
q ∈ Q = {q : q > 0}

Table 1: Log-distribution scenarios for multifractal products of stationary
OU-type processes

5 Data fitting

Next we want to show some evidence of multifractality in real financial data

through the simple empirical test outlined in the previous section. This will

become the motivation of the paper enabling us to look at various construc-

tions of multifractal processes which can be implemented into the risky asset

model (3.1).

To estimate the scaling function, Calvet and Fisher (2002) proposed a method

based on a partition function. It allowed them to successfully detect the

multifractal properties of real financial data (in their case, the French stock
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market). In this paper we will use data sets of exchange rates between USD

and DM(T=6333), FF(T=6428), GBP(T=4510) and JY(T=4510) where an

observation has been taken at the close of every working day over various

periods of time between 1971 and 2001. Although the FF and the DM are no

longer in trade they allow us to test our models on quite different behaviours

as these series do present a high degree of multifractality.

(a) DM (b) FF

(c) GBP (d) JY

Figure 1: The partition function

The partition function is denoted πδ(Y, q), and defined by partitioning the

series {Y(t)} into n subintervals of length δ for each moment q

πδ(Y, q) =
n∑

i=1

|Y⌈iδ⌉ − Y⌈(i−1)δ⌉|q, (5.1)

where ⌈·⌉ is the integer part (ceiling) operator. By allowing this partition
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function to be the empirical counterpart of E(|Y (t)|q) in (3.2), we have

log πδ(Y, q) = τA(
q

2
) log δ + log T + const,

where T = nδ and const = log cA(
q
2
)(
√
2σ2)qΓ(1+q

2
)/
√
π. Thus by plotting

log πδ(Y, q) against log δ for various moments q (Figure 1 ), we can obtain

τ̂A(
q
2
).

(a) DM (b) FF

(c) GBP (d) JY

Figure 2: Estimation of the multifractal spectrum

In addition, the multifractal spectrum (see Figure 2 ) is estimated by

f̂(α) = inf
q
[qα− τ̂(q)].

Overall, Figure 1 and Figure 2, based on non-parametric estimates, show

clear evidence of multifractality in the data.

To judge about the applicability of the models discussed, we will now com-

pare the non-parametric estimate of the scaling function τ̂(q) with the Rényi

23



function obtained for the scenarios corresponding to the gamma, inverse

Gaussian, normal inverse Gaussian, tempered stable, and spectrally nega-

tive stable distributions (see Table 1 ).
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1

2

3

THqL

(a) DM (α̂ = 10.02, β̂ = 1.62, b̂ = 1.12)

2 4 6 8
q

0

1

2

3

THqL

(b) FF (α̂ = 12.11, β̂ = 2.64, b̂ = 1.10)

2 4 6 8
q

0

1

2

3

THqL

(c) GBP (α̂ = 8.01, β̂ = 0.40, b̂ = 3.30)

2 4 6 8
q

0

1

2

3

THqL

(d) JY (α̂ = 8.01, β̂ = 1.00, b̂ = 2.64)

Figure 3: Log-gamma scenario of multifractal products of geometric OU-type
processes: Solid (line)- non-parametric estimate of τ(q), Thick-dashed- fitted
parametric estimate of τ(q), Sparse-dashed- Brownian motion case.

For all remaining empirical work, the values of the increment δ in the cal-

culation of the partition function (5.1) have been set at 1,2,3,4,5,6,7,15 and

30 (i.e. short to medium term approximately), together with the values of

moment q ranging from 0 to 8 by 0.5 increments. This enables us to compute

τ̂(q) for every q and for each data set.

All parameters of the parametric Rényi functions including the scaling pa-

rameter b and parameters of the marginal distribution ofX(t) were estimated
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(a) DM (δ̂ = 0.68, γ̂ = 4.61, b̂ = 1.04)
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(b) FF (δ̂ = 0.93, γ̂ = 4.72, b̂ = 1.04)
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(c) GBP (δ̂ = 0.32, γ̂ = 4.01, b̂ = 2.31)
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(d) JY (δ̂ = 1.38, γ̂ = 4.52, b̂ = 1.54)

Figure 4: Log-inverse Gaussian scenario of multifractal products of geometric
OU-type processes: Solid (line)- non-parametric estimate of τ(q), Thick-
dashed- fitted parametric estimate of τ(q), Sparse-dashed- Brownian motion
case.
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using non-linear least squares. Our aim is to minimise the mean square error

between the scaling function estimated from the data and the correspond-

ing analytical forms; the data-fitted Renyi function will be denoted by τθ̂(q).

For other techniques of estimation which could be adapted here see Taufer

and Leonenko (2009) and Taufer et al. (2011) which apply characteristic

function estimation techniques to OU processes and OU-based stochastic

volatility models.

2 4 6 8
q

0

1

2

3

THqL

(a) DM (α̂ = 10.98, δ̂ = 1.31, b̂ = 1.94, β̂ =
1.74)
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THqL

(b) FF (α̂ = 14.20, δ̂ = 2.76, b̂ = 2.17, β̂ =
0.46)
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(c) GBP (α̂ = 44.87, δ̂ = 0.05, b̂ = 2.61, β̂ =
36.87)
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q

0

1
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3

THqL

(d) JY (α̂ = 36.01, δ̂ = 0.38, b̂ = 3.72, β̂ =
28.01)

Figure 5: Log-normal inverse Gaussian scenario of multifractal products of
geometric OU-type processes: Solid (line)- non-parametric estimate of τ(q),
Thick-dashed- fitted parametric estimate of τ(q), Sparse-dashed- Brownian
motion case.

Figures 3-7 report, for each scenario of Table 1, the non-parametric estimate
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τ̂(q) and the model-based one fitted from the data τθ̂(q). As we see the DM

and the FF do show quite a different behaviour from the other currencies

(which tend to be less liquid). All fitted scenarios seem to be able to cap-

ture quite well the behaviour of the non-parametic estimate τ̂(q), with some

distinguo. It appears that the most difficult series to fit is the FF whose

curvature of τ̂(q), especially for q > 4, is quite difficult to be captured by

any of the scenarios except the Log-SNS one which looks quite apt for the

exchange-rate problem as it obtains good results in all cases.
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(a) DM (δ̂ = 1.56, γ̂ = 16.97, κ̂ = 0.89, b̂ =
1.10)
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(b) FF (δ̂ = 11.85, γ̂ = 4.01, κ̂ = 0.22, b̂ =
1.01)
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(c) GBP (δ̂ = 0.56, γ̂ = 4.07, κ̂ = 0.63, b̂ =
1.98)
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(d) JY (δ̂ = 0.26, γ̂ = 4.01, κ̂ = 0.67, b̂ =
3.90)

Figure 6: Log-tempered stable scenario of multifractal products of geometric
OU-type processes: Solid (line)- non-parametric estimate of τ(q), Thick-
dashed- fitted parametric estimate of τ(q), Sparse-dashed- Brownian motion
case.
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(a) DM (α̂ = 2.82, λ̂ = 7.08, b̂ = 10.63)
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(b) FF (α̂ = 1.94, λ̂ = 67.73, b̂ = 1.05)
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(c) GBP (α̂ = 3.64, λ̂ = 42.11, b̂ = 8.10)

2 4 6 8
q

0

1

2

3

THqL

(d) JY (α̂ = 3.86, λ̂ = 68.35, b̂ = 30.86)

Figure 7: Log-spectrally negative α-stable scenario of multifractal products of
geometric OU-type processes: Solid (line)- non-parametric estimate of τ(q),
Thick-dashed- fitted parametric estimate of τ(q), Sparse-dashed- Brownian
motion case.
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To better appreciate the details, the residuals τ̂(q)−τθ̂(q) for selected scenar-

ios (other cases presented similar results) are depicted in Figure 8. The scale

is the same in all graphs to allow visual comparison across all currencies. As

we see the Log-SNS scenario is the closest to the curvature of τ̂(q) notwith-

standing some departures are still present. These impressions are confirmed

by the results in Table 2 where the residual sum of squares after regression

(RSS) are reported for all cases. According to this criterion the Log-SNS

scenario always outperform the others, especially in the case of the FF.
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(d) JY

Figure 8: The residual plots after regression for some selected models: Cross-
Spectrally negative α stable; Star- Normal Inverse Gaussian; Circle- Gamma.

Recall that the inverse gaussian distribution is a special case of the tempered

stable one when κ is set to 1/2. We note that in the case of the DM, GBP

and JY the greater flexibility given by the additional parameter appears to

be offset by the more complex estimation problem as the RSS’s are all quite

29



Scenario Residual Sum of Squares
DM FF GBP JY

Log-Γ 0.0387 0.0896 0.0275 0.0275
Log-IG 0.0359 0.0810 0.0279 0.0279
Log-NIG 0.0357 0.0550 0.0280 0.0280
Log-TS 0.0353 0.0682 0.0283 0.0285
Log-SNS 0.0343 0.0294 0.0191 0.0191

Table 2: The residual sum of squares after regression

similar. However, for the FF, which appears as the most difficult case, the

tempered stable scenario clearly outperform the inverse gaussian one.

6 Conclusion

We have reviewed a class of models based on multifractal activity time and

have tested their flexibility in applications through the use of exchange rate

data. Multifratal processes based on products of geometric OU processes

appear well apt for applications in different fields as several different mother

processes for their construction are available; properties of different scenarios

are easily derived by the characteristic function of the underlying mother

process.
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