Inspection games with long-run inspectors

Luciano Andreozzi
The Discussion Paper series provides a means for circulating preliminary research results by staff of or visitors to the Department. Its purpose is to stimulate discussion prior to the publication of papers.

Requests for copies of Discussion Papers and address changes should be sent to:

Dott. Luciano Andreozzi
E.mail luciano.andreozzi@economia.unitn.it
Dipartimento di Economia
Università degli Studi di Trento
Via Inama 5
38100 TRENTO ITALIA
Inspection games with long-run inspectors.*

Luciano Andreozzi
Università degli Studi di Trento
Facoltà di Economia
Via Inama, 5 - 38100 Trento Italy
luciano.andreozzi@unitn.it

November 2008

Abstract
A single, long-run policeman faces a large population of myopic would-be criminals. This paper shows that this interaction has counterintuitive comparative static properties. A forward-looking inspector might tolerate more law violations than a short-sighted one.

1 Introduction

Game theoretical models of law-enforcement (Graetz e.a. [12], Tsebelis [16] [17], Holler [11], Franckx [6], Saha and Poole [14], Cressmann e.a. [5], Andreozzi [1]) show a puzzling analogy with the predator-prey relationships studied in theoretical ecology: they have counterintuitive comparative static properties and generate oscillations. Let start with comparative statics. Killing predators will not reduce the number of predators, but will only increase the number of their preys. Similarly, killing preys will only reduce the number of predators. In the law enforcement literature a mathematically analogous result holds true. Increasing penalties will not reduce crime, but will only reduce the frequency of police inspections. In general, the only way to change the behavior of would-be criminals is to modify the policemen’s payoffs and *vice versa*. This result has been taken as a proof that the standard economic approach to crime deterrence inspired to Gary Becker’s [3] seminal paper (that neglects strategic considerations) might be flawed. (Tsebelis [16], Holler [11].)

Oscillations are due to the hypothesis that police agents and criminals form two distinct populations of short-lived and myopic agents. Policemen inspect would-be transgressors as long as they expect some of them to violate the law, but they quit inspecting when they realize that violations are almost never committed. However, if police do not inspect, then violations become more frequent and this brings about a new wave of inspections. The analogies with the oscillations of predator-prey relationships are obvious.

The hypothesis that both actors involved are myopic is not always realistic. There are cases in which police is best modelled as a single, forward-looking actor, who faces a large population of myopic would-be transgressors. Examples of this kind of interaction abound. Just think about the relationship between tax-auditors and tax-payers, or police crews and motorists on highways. The present paper asks the following question: should one expect to see more or less crime if the police force is a long-lived, forward-looking agent rather than a myopic one? (Neher [13] asks a similar question concerning the economics of crime.) One might conjecture that a forward-looking police force will not quit inspecting when law infractions become rare, because it anticipates that the number of infractions will rise again if it does. Hence one would predict no oscillations and a lower level of crime in equilibrium. This paper shows that this intuition is partially mistaken. Contrary to what one might expect, as the police force becomes more forward-looking, more crime, not less, might be observed in equilibrium. Some technical conditions at which such a counterintuitive phenomenon can take place are investigated. I will also show that these conditions are fulfilled by some of the games discussed in the literature, for example by Saha and Poole [14].
Consider the game in Figure 2. Player A must decide whether to Violate a given law or a regulation. B is an inspector, or a police officer, who might Inspect him. The entries of the two matrices satisfy the following inequalities: $a_{12} > a_{22}$ (violating the law is profitable if police does not inspect), $a_{21} > a_{11}$ (respecting the law is the best strategy if police inspect), $b_{11} > b_{12}$ (police prefers to inspect if the public violates the law) and $b_{22} > b_{21}$ (police rather not inspect if the public respects the law). Let p be the probability with which A plays Violate and q the probability with which B plays Inspect. The game has a single mixed strategy Nash equilibrium:

$$(p^*, q^*) = \left(\frac{b_{22} - b_{21}}{a_{22} - a_{12}}, \frac{a_{22} - a_{12}}{b_{22} - b_{21} - b_{12} + b_{11}} \right)$$

Suppose now that the game is played repeatedly by pairs of individuals drawn at random from two large populations A (the public) and B (the police). In each population, strategies that yield a payo larger than the average within that population are assumed to increase, crowding out strategies that yield lower-than-average payoffs. This might reflect a process of learning, imitation and so on. (See Weibull [18] for an accessible introduction to evolutionary models of this kind.)

Formally, let p and q be the fractions of A and B that play Violate and Inspect respectively. I will assume that the learning and imitation process will induce p and q to change over time according to the Replicator Dynamics (RD):

$$\begin{align*}
\dot{p} &= p(1-p)(\pi^B_1(q) - \pi^B_2(q)) = \alpha p (1-p)(q^*-q) \\
\dot{q} &= q(1-q)(\pi^A_1(p) - \pi^A_2(p)) = \beta q (1-q)(p-p^*)
\end{align*}$$

where $\alpha = -a_{22} + a_{21} - a_{12} - a_{11} > 0$ and $\beta = b_{22} - b_{21} - b_{12} + b_{11} > 0$. $\pi^A_i(p)$, $\pi^B_i(q)$ are the expected payoffs of adopting strategy i ($i = 1, 2$) in population A and B. It is a well known fact in evolutionary game theory that the fractions p and q oscillate constantly, although their averages converge to the equilibrium values p^* and q^*. (See Andreozzi [1] and Cressman e.a. [5] for an application of this result to the logic of law enforcement.)

3 Evolutionary policies

The evolutionary model in the previous section is based on the hypothesis that both populations are made of limitedly rational and myopic players. Suppose

<table>
<thead>
<tr>
<th></th>
<th>Inspect</th>
<th>Not Inspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violate</td>
<td>a_{11}, b_{11}</td>
<td>a_{12}, b_{12}</td>
</tr>
<tr>
<td>Not Violate</td>
<td>a_{21}, b_{21}</td>
<td>a_{22}, b_{22}</td>
</tr>
</tbody>
</table>

Table 1: The Inspection Game
now that agent B is a a single organization (the police force, the tax authority and so on.) The frequency q with which it plays Inspect will now reflect the long term interest of this collective agent, instead of the aggregation of a multitude of individual (myopic) choices. Nothing changes in population A, whose internal dynamics is still represented by the differential equation (2a).

Since now B is a rational, forward-looking player, she will choose a path for the frequency $q(t)$ with which she plays Inspect that maximizes the actual value of the future stream of payoff:

$$\pi^B(p(t), q(t)) = b_{11}pq + b_{12}p(1 - q) + b_{21}(1 - p)q + b_{22}(1 - p)(1 - q)$$

subject to the constraint that the frequency $p(t)$ of law infractions varies according to (2a). Formally, B solves the following optimal control problem:

$$\max_q \int_0^\infty e^{-rt} \pi^B(p(t), q(t)) dt$$

$$s.t. \quad \dot{p} = \alpha p(1 - p)(q^* - q)$$

where r is B’s time discount rate.\(^1\) The current-value Hamiltonian for this problem is

$$H(p(t), q(t), m(t)) = \pi^B(p(t), q(t)) + m(t)[\alpha p(1 - p)(q^* - q)]$$

where the costate variable $m(t)$ satisfies\(^2\):

$$\dot{m} = rm - \frac{\partial H}{\partial p} = rm - \frac{\partial \pi}{\partial p} - m\alpha(1 - 2p)(q^* - q)$$

$$= m(r - \alpha(q^*-q)(1-2p)) - \beta(q - q^+),$$

where $q^+ \overset{def}{=} \min\left\{\frac{b_{22} - b_{12}}{b_{11} - b_{12} - b_{22} + b_{22}}\right\}$. A stationary optimal path is a triple $(\bar{p}, \bar{q}, \bar{m})$ such that $\dot{p} = \dot{m} = 0$ for $p = \bar{p}$, $q = \bar{q}$ and $m = \bar{m}$, while for every $q \neq \bar{q}$, $H(\bar{p}, \bar{q}, \bar{m}) > H(\tilde{p}, \bar{q}, \bar{m})$. If initially $p_0 = \bar{p}$, a rational inspector B maximizes his payoffs by setting $q = \bar{q}$, so that $\dot{p} = \dot{m} = 0$.

Lemma 1 The optimal control problem (3) has a unique stationary optimal path:

$$\bar{q} = q^*;$$

$$\bar{m} = \frac{\beta(q^* - q^+)}{r};$$

$$\bar{p} = \frac{-(\bar{m}\alpha - \beta) - \sqrt{(\bar{m}\alpha - \beta)^2 + 4\bar{m}\alpha\beta\bar{p}^+}}{2\bar{m}\alpha}$$

\(^1\)Notice that the initial fraction of law infractions p_0 has been restricted to the open interval $(0, 1)$. This is to avoid that the population gets locked in a steady state in which $\dot{p} = 0$ even if the two pure strategies yield different payoffs.

\(^2\)Consider that it is easy (if tedious) to show that $\frac{\partial H}{\partial p} = \beta(q - q^+)$.\)
Proof. To see that \((\bar{q}, \bar{m}, \bar{p})\) is a stationary optimal path for the control problem (3) consider first that for any \(p \in (0, 1), \dot{p} = 0\) iff \(q = q^*\). If \(q = q^*\), then equation (5) reduces to \(\dot{m} = \beta(q^* - q^+)\), and hence

\[
\dot{m} = 0 \iff m = \frac{\beta(q^* - q^+)}{r} = \bar{m}
\]

(9)

Since \(\bar{q} = q^*\) is an interior solution, we must have

\[
\frac{\partial H(p, q, m)}{\partial q} = \beta(p - p^*) - \bar{m} \alpha(1 - p) = 0
\]

(10)

that is \(\bar{m} \alpha p^2 + p(\beta - \bar{m} \alpha) - \beta p^* = 0\). The roots of this equation are:

\[
p_{12} = \frac{-(\bar{m} \alpha - \beta) \pm \sqrt{(\bar{m} \alpha - \beta)^2 + 4\bar{m} \alpha \beta p^*}}{2\bar{m} \alpha}
\]

(11)

It can be easily shown that the smaller of the two roots lies in the interval \([0, 1]\). This is the only value of \(p\) that satisfy the optimality condition (10) and the restriction on the state variable \(p \in (0, 1)\). This completes the first part of the proof.

To see that \((\bar{p}, \bar{q}, \bar{m})\) is the only stationary optimal path, consider that for \(q \neq q^*\) \(\dot{p} = 0\) iff \(p = 0\) or \(p = 1\). However, if \(p_0 \in (0, 1)\), then \(p\) cannot reach either 0 or 1 in a finite time (because \(\dot{p} \to 0\) as \(p\) approaches the borders of the interval \([0, 1]\)), so that if \(q \neq q^*\) then \(\dot{p} \neq 0\) for all \(t\). This completes the proof.

The Hamiltonian (4) is linear in the control variable \(q\) and has a single interior stationary optimal path.\(^3\) This implies that the optimal control problem in the general case in which \(p_0 \neq \bar{p}\), has a particularly simple solution: \(B\) must choose \(q\) in such a way that the state variable \(p\) approaches its optimal stationary value \(\bar{p}\) in the shortest time. This is the content of the following:

Proposition 2 1. The optimal strategy \(S\) for the long run inspector \(B\) is:

a) if \(p < \bar{p}\), then \(q = 0\);

b) if \(p > \bar{p}\), then \(q = 1\);

c) if \(p = \bar{p}\), then \(q = q^*\).

2. Under the optimal strategy \(S\), from any initial condition \(p_0 \in (0, 1)\) population \(A\) reaches its stationary optimal path level \(\bar{p}\) in a finite time \(\bar{t}\). After that time, \(B\) sets \(q = q^*\) so that \(p\) remains fixed at \(\bar{p}\).

Proof. 1. Because of the linearity of the Hamiltonian (4), the optimal path is the one that minimizes the time spent out of the optimal stationary path \((\bar{p}, \bar{q}, \bar{m})\). (Proofs of this fact can be found in Kamien and Schwartz [9], section 16, Takayama [15] and Clark [4].) Since \(\arg\max(p, q) = 0\) and \(\arg\min(p, q) = 1\), if \(p < \bar{p}\) \((p > \bar{p})\), the optimal policy for \(B\) is to set \(q = 0\) \((q = 1)\). On the other hand, if \(p = \bar{p}\), then \(q = q^*\) so that \(\dot{p} = 0\).

\(^3\)To see that the Hamiltonian in linear in \(q\) consider that the inspector’s payoff function \(\pi^B(\cdot, \cdot)\) is linear both in \(p\) and in \(q\), and that \(RD\) is linear in \(q\), although not in \(p\).
2. Suppose that \(p_0 < \bar{p}\) (the case \(p_0 > \bar{p}\) can be treated similarly). In this case \(B\) will set \(q = 0\), so that equation (2a) reduces to a simple logistic equation

\[
\dot{p} = p(1-p)q^*
\]

that can be integrated

\[
p(t) = \frac{1}{1 - \exp(k-q^*t)},
\]

where \(k = \log(\frac{p_0-1}{p_0})\). It follows that the time it takes to bring \(p\) to its optimal level \(\bar{p}\) is

\[
\bar{t} = \frac{1}{q^*}[k - \log(\bar{p} - 1)].
\]

which is bounded away from \(\infty\). After a time \(\bar{t}\), \(B\) will set \(q = q^*\) so that \(\dot{p} = 0\).

Proposition 2 shows that population \(A\) will spend most of the time at \(\bar{p}\), because the inspector will minimize the time it spends outside this state. Hence, it is interesting to see how changes in the police’s time discount rate \(r\) affect \(\bar{p}\).

Proposition 3

(a) The optimal stationary value \(\bar{p}\) converges to the stage game Nash equilibrium value \(\bar{p} \rightarrow p^*\) as \(r \rightarrow \infty\); (b) \(\bar{p} > p^*\) and \(\bar{p} \rightarrow 1\) as \(r \rightarrow 0\) if \(q^* > q^+\); (c) \(\bar{p} < p^*\) and \(\bar{p} \rightarrow 0\) as \(r \rightarrow 0\) if \(q^* < q^+\).

Proof.

a) If \(r \rightarrow \infty\), \(\bar{m} = \frac{\beta(a^*-q^+)}{r} \rightarrow 0\). Recall that \(\bar{p}\) is the smallest root of \(\bar{m}p^2 + p(\beta - \bar{m} \alpha) - \beta p^* = 0\), which for \(\bar{m} \rightarrow 0\) reduces to \(p \beta - p^* \beta = 0\), whose only root is \(p = p^*\).

b) If \(r \rightarrow \infty\), \(\bar{m} = \frac{\beta(a^*-q^+)}{r} \rightarrow +\infty\) if \(q^* > q^+\). Let rewrite condition (10) as

\[
\bar{m} \alpha = \frac{-\beta(p - p^*)}{p(1-p)}
\]

The left hand side approaches \(\infty\) as \(\bar{m} \rightarrow +\infty\) and hence \(p \rightarrow 1\) (If \(p \rightarrow 0\), then the right hand side would approach \(-\infty\)). Similarly, the left hand side approaches minus infinite as \(\bar{m} \rightarrow +\infty\), so that \(p \rightarrow 0\).

Proposition 3 is the core of the paper. It proves that if the inspector is rational, but myopic \((r \rightarrow \infty)\), it will keep the frequency of law violations around its Nash equilibrium value \(p^*\). This is not surprising: if \(p > p^*\), the inspector gets a larger payoff if she plays \(Inspect\). In so doing, however, she reduces the frequency of law infractions \(p\) until it reaches the Nash equilibrium level \(p^*\). At this point \(Inspect\) and \(Not Inspect\) yield the same payoff. Similarly, if initially \(p < p^*\), a myopic inspector will play \(Not Inspect\) because it yields a larger immediate payoff than \(Inspect\). However, this will increase the frequency of violations \(p\) until it reaches \(p^*\).

When the inspector becomes more forward looking, \((r \rightarrow 0)\) it will take into consideration the future effects of her current choices. Since he will not play the strategy that yields the larger immediate payoff, the optimal level of crime
violations \bar{p} will be different from p^*. The interesting result of this analysis is that increasing r will not necessarily reduce \bar{p} below p^*. Proposition 3 shows that this will happen only provided that $q^* < q^+$. When the opposite inequality holds true, a more forward-looking inspector will tolerate more crime than a short-sighted one.

4 Conclusions

Andreozzi [2] discusses a variant of the inspection game in which the inspector can act as a Stackelberg leader of the game and he obtains a result similar to those presented in Proposition 3. He shows that if the inspector can commit himself to a probability of inspection, he will induce player A to play Violate if $q^* > q^+$ and to play Not Violate if $q^* < q^+$. The present paper extends this result to the case in which the inspector (who cannot commit to a probability of inspection) is a long-run player facing a large population of short-sighted opponents, in the spirit of Fudenberg and Levine [7] [8]. All the consequences of this result for the economic approach to law enforcement are discussed in Andreozzi [2] and will not be repeated here.

References

Elenco dei papers del Dipartimento di Economia

2000.1 A two-sector model of the effects of wage compression on unemployment and industry distribution of employment, by Luigi Bonatti

2000.2 From Kuwait to Kosovo: What have we learned? Reflections on globalization and peace, by Roberto Tamborini

2000.3 Metodo e valutazione in economia. Dall’apriorismo a Friedman, by Matteo Motterlini

2000.4 Under tertiatisation and unemployment, by Maurizio Pugno

2001.1 Growth and Monetary Rules in a Model with Competitive Labor Markets, by Luigi Bonatti.

2001.2 Profit Versus Non-Profit Firms in the Service Sector: an Analysis of the Employment and Welfare Implications, by Luigi Bonatti, Carlo Borzaga and Luigi Mittone.

2001.4 The monetary transmission mechanism in Italy: The credit channel and a missing ring, by Riccardo Fiorentini and Roberto Tamborini.

2001.5 Vat evasion: an experimental approach, by Luigi Mittone

2001.6 Decomposability and Modularity of Economic Interactions, by Luigi Marengo, Corrado Pasquali and Marco Valente.

2001.7 Unbalanced Growth and Women’s Homework, by Maurizio Pugno

2002.1 The Underground Economy and the Underdevelopment Trap, by Maria Rosaria Carillo and Maurizio Pugno.

2002.3 Firms’ bankruptcy and turnover in a macroeconomy, by Marco Bee, Giuseppe Espa and Roberto Tamborini.

2002.4 One “monetary giant” with many “fiscal dwarfs”: the efficiency of macroeconomic stabilization policies in the European Monetary Union, by Roberto Tamborini.

2002.5 The Boom that never was? Latin American Loans in London 1822-1825, by Giorgio Fodor.
2002.6 L'economia senza banditore di Axel Leijonhufvud: le ‘forze oscure del tempo e dell’ignoranza’ e la complessità del coordinamento, by Elisabetta De Antoni.

2002.7 Why is Trade between the European Union and the Transition Economies Vertical?, by Hubert Gabrisch and Maria Luigia Segnana.

2003.1 The service paradox and endogenous economic growth, by Maurizio Pugno.

2003.2 Mappe di probabilità di sito archeologico: un passo avanti, di Giuseppe Espa, Roberto Benedetti, Anna De Meo e Salvatore Espa. (Probability maps of archaeological site location: one step beyond, by Giuseppe Espa, Roberto Benedetti, Anna De Meo and Salvatore Espa).

2003.3 The Long Swings in Economic Understanding, by Axel Leijonhufvud.

2003.4 Dinamica strutturale e occupazione nei servizi, di Giulia Felice.

2003.5 The Desirable Organizational Structure for Evolutionary Firms in Static Landscapes, by Nicolás Garrido.

2003.7 Essays on Computable Economics, Methodology and the Philosophy of Science, by Kumaraswamy Velupillai.

2003.9 Contratto d’area cooperativo contro il rischio sistemico di produzione in agricoltura, di Luciano Pilati e Vasco Boatto.

2004.2 The economic consequences of Mr. G. W. Bush’s foreign policy. Can the US afford it? by Roberto Tamborini

2004.3 Fighting Poverty as a Worldwide Goal by Rubens Ricupero

2004.4 Commodity Prices and Debt Sustainability by Christopher L. Gilbert and Alexandra Tabova
2004.5 A Primer on the Tools and Concepts of Computable Economics by K. Vela Velupillai

2004.6 The Unreasonable Ineffectiveness of Mathematics in Economics by Vela K. Velupillai

2004.7 Hicksian Visions and Vignettes on (Non-Linear) Trade Cycle Theories by Vela K. Velupillai

2004.8 Trade, inequality and pro-poor growth: Two perspectives, one message? By Gabriella Berloffa and Maria Luigia Segnana

2004.11 A Social Contract Account for CSR as Extended Model of Corporate Governance (Part II): Compliance, Reputation and Reciprocity by Lorenzo Sacconi

2004.12 A Fuzzy Logic and Default Reasoning Model of Social Norm and Equilibrium Selection in Games under Unforeseen Contingencies by Lorenzo Sacconi and Stefano Moretti

2005.1 The happiness paradox: a formal explanation from psycho-economics by Maurizio Pugno

2005.3 On Maximum Likelihood Estimation of Operational Loss Distributions by Marco Bee

2005.4 An enclave-led model growth: the structural problem of informality persistence in Latin America by Mario Cimoli, Annalisa Primi and Maurizio Pugno

2005.6 Price Discovery in the Aluminium Market by Isabel Figuerola-Ferretti and Christopher L. Gilbert.

2005.7 How is Futures Trading Affected by the Move to a Computerized Trading System? Lessons from the LIFFE FTSE 100 Contract by Christopher L. Gilbert and Herbert A. Rijken.
2005.8 Can We Link Concessional Debt Service to Commodity Prices? By Christopher L. Gilbert and Alexandra Tabova

2005.10 Un modello finanziario di breve periodo per il settore statale italiano: l’analisi relativa al contesto pre-unione monetaria by Bernardo Maggi e Giuseppe Espa.

2005.11 Why does money matter? A structural analysis of monetary policy, credit and aggregate supply effects in Italy, Giuliana Passamani and Roberto Tamborini.

2005.12 Conformity and Reciprocity in the “Exclusion Game”: an Experimental Investigation by Lorenzo Sacconi and Marco Faillo.

2005.18 Capabilities, the self, and well-being: a research in psychoeconomics, by Maurizio Pugno.

2005.20 Semiparametric Evidence on the Long-Run Effects of Inflation on Growth, by Andrea Vaona and Stefano Schiavo.

2006.1 On the role of public policies supporting Free/Open Source Software. An European perspective, by Stefano Comino, Fabio M. Manenti and Alessandro Rossi.

2006.2 Back to Wicksell? In search of the foundations of practical monetary policy, by Roberto Tamborini

2006.3 The uses of the past, by Axel Leijonhufvud
2006.4 Worker Satisfaction and Perceived Fairness: Result of a Survey in Public, and Non-profit Organizations, by Ermanno Tortia

2006.5 Value Chain Analysis and Market Power in Commodity Processing with Application to the Cocoa and Coffee Sectors, by Christopher L. Gilbert

2006.6 Macroeconomic Fluctuations and the Firms’ Rate of Growth Distribution: Evidence from UK and US Quoted Companies, by Emiliano Santoro

2006.7 Heterogeneity and Learning in Inflation Expectation Formation: An Empirical Assessment, by Damjan Pfajfar and Emiliano Santoro

2006.8 Good Law & Economics needs suitable microeconomic models: the case against the application of standard agency models: the case against the application of standard agency models to the professions, by Lorenzo Sacconi

2006.9 Monetary policy through the “credit-cost channel”. Italy and Germany, by Giuliana Passamani and Roberto Tamborini

2007.1 The Asymptotic Loss Distribution in a Fat-Tailed Factor Model of Portfolio Credit Risk, by Marco Bee

2007.2 Sraffa’s Mathematical Economics – A Constructive Interpretation, by Kumaraswamy Velupillai

2007.3 Variations on the Theme of Conning in Mathematical Economics, by Kumaraswamy Velupillai

2007.4 Norm Compliance: the Contribution of Behavioral Economics Models, by Marco Faillo and Lorenzo Sacconi

2007.5 A class of spatial econometric methods in the empirical analysis of clusters of firms in the space, by Giuseppe Arbia, Giuseppe Espa e Danny Quah.

2007.6 Rescuing the LM (and the money market) in a modern Macro course, by Roberto Tamborini.

2007.10 Spatial Models for Flood Risk Assessment, by Marco Bee, Roberto Benedetti e Giuseppe Espa
2007.11 *Inequality across cohorts of households: evidence from Italy,* by Gabriella Berloffa and Paola Villa

2007.12 *Cultural Relativism and Ideological Policy Makers in a Dynamic Model with Endogenous Preferences,* by Luigi Bonatti

2007.13 *Optimal Public Policy and Endogenous Preferences: an Application to an Economy with For-Profit and Non-Profit,* by Luigi Bonatti

2007.15 *Home Production, Labor Taxation and Trade Account,* by Luigi Bonatti.

2007.16 *The Interaction Between the Central Bank and a Monopoly Union Revisited: Does Greater Uncertainty about Monetary Policy Reduce Average Inflation?*, by Luigi Bonatti.

2007.17 *Complementary Research Strategies, First-Mover Advantage and the Inefficiency of Patents,* by Luigi Bonatti.

2007.18 *Dual Licensing in Open Source Markets,* by Stefano Comino and Fabio M. Manenti.

2007.20 *Aggregation of Regional Economic Time Series with Different Spatial Correlation Structures,* by Giuseppe Arbia, Marco Bee and Giuseppe Espa.

2007.21 *The Sustainable Enterprise. The multi-fiduciary perspective to the EU Sustainability Strategy,* by Giuseppe Danese.

2007.22 *Taming the Incomputable, Reconstructing the Nonconstructive and Deciding the Undecidable in Mathematical Economics,* by K. Vela Velupillai.

2007.24 *Models for Non-Exclusive Multinomial Choice, with Application to Indonesian Rural Households,* by Christopher L. Gilbert and Francesca Modena.

2007.25 *Have we been Mugged? Market Power in the World Coffee Industry,* by Christopher L. Gilbert.

2007.27 Local Credit ad Territorial Development: General Aspects and the Italian Experience, by Silvio Goglio.

2007.28 Importance Sampling for Sums of Lognormal Distributions, with Applications to Operational Risk, by Marco Bee.

2007.30 Taking stock: global imbalances. Where do we stand and where are we aiming to? by Andrea Fracasso.

2007.31 Rediscovering Fiscal Policy Through Minskyan Eyes, by Philip Arestis and Elisabetta De Antoni.

2008.3 A look at the relationship between industrial dynamics and aggregate fluctuations, Domenico Delli Gatti, Edoardo Gaffeo, Mauro Gallegati.

2008.9 Does forest damage have an economic impact? A case study from the Italian Alps, Sandra Notaro, Alessandro Paletto, Roberta Raffaelli.

2008.10 Compliance by believing: an experimental exploration on social norms and impartial agreements, Marco Faillo, Stefania Ottone, Lorenzo Sacconi.

2008.16 Financial Constraints and Firm Export Behavior, Flora Bellone, Patrick Musso, Lionel Nesta and Stefano Schiavo

2008.18 CSR as Contractarian Model of Multi-Stakeholder Corporate Governance and the Game-Theory of its Implementation, Lorenzo Sacconi

2008.19 Managing Agricultural Price Risk in Developing Countries, Julie Dana and Christopher L. Gilbert

2008.20 Commodity Speculation and Commodity Investment, Christopher L. Gilbert

2008.21 Inspection games with long-run inspectors, Luciano Andreozzi
PUBBLICAZIONE REGISTRATA PRESSO IL TRIBUNALE DI TRENTO