Taking Keller seriously: trade and distance in international R&D spillovers
Andrea Fracasso, Giuseppe Vittucci Marzetti
n. 6/2011
1. Introduction

Since the seminal work by Coe and Helpman (1995), a number of studies have investigated the role of trade in international R&D spillovers (e.g. Engelbrecht, 1997; Xu and Wang, 1999; Lejour and Nahuis, 2005; Lumenga-Neso et al., 2005; Busse and Groizard, 2008; Coe et al., 2009).

Among the many, Keller (1998) takes a critical stance and questions Coe and Helpman’s (1995) empirical findings, by showing that the overall stock of the rest of the world R&D (i.e. the simple sum of the R&D produced abroad over time) performs better than an import weighted sum of it. This seems to suggest that knowledge diffusion is global and trade-independent, contrary to what suggested by Coe and Helpman.

The global vs. local nature of R&D spillovers is addressed again in Keller (2002), where he departs from the former claim and argues that spillovers are localized and their localized nature comes mainly from the fact that trade is geographically concentrated because of transport costs. In Keller (2004) the perspective is broadened further: the localized nature of R&D spillovers comes to an important extent from the partially tacit nature of technology which requires the direct interaction among economic agents. (In this perspective, international trade can still be conducive to spillovers, as far as it facilitates face-to-face interactions which foster the diffusion of tacit knowledge.)

Thus, Keller starts from an hypothesis of “global pool” of technology (1998) and ends up with the idea that spillovers are geographically concentrated because they mainly depend on factors that are not directly related to international trade (2004). Given that both hypotheses are theoretically plausible, it remains an empirical issue whether R&D spillovers are local and to what extent they are trade-related. In this paper we address this issue by means of empirical specifications that nest both hypotheses.

In particular, in Section 2, we put forward a simple test for the hypothesis that R&D spillovers are global and trade-independent. In Section 3, we analyze the distinct roles of distance and trade, and consider the hypothesis that geographical proximity, with its impact on both trade and knowledge spillovers, is the actual determinant of R&D spillovers. Section 4 concludes summing up the main results.

2. Randomizing the randomizer: a simple test of the global pool hypothesis

Keller (1998) starts from Coe and Helpman’s (1995) specification:

\[
\log F_{it} = \alpha_i + \beta_d \log S_{it}^d + \beta_f \log S_{it}^f + \epsilon_{it} \tag{1}
\]

1The theoretical model sketched in the Appendix of Keller’s (2002) paper is an horizontal innovation model à la Rivera-Batiz and Romer (1991), where R&D externalities are rent spillovers (Griliches, 1979) and internal trade in intermediate goods is constrained by transport costs, exponentially increasing with geographical distance.
where the log of the Total Factor Productivity (TFP) of country i at time t (F_{it}) is regressed against a country dummy ($α_i$), the log of domestic R&D capital stock (S^d_{it}) and the log of foreign R&D stock of country i (S^f_{it}), and the latter is calculated as an import-weighted sum of the domestic R&D stock of the other countries ($S^f_{it} = \sum_{j \neq i} \frac{m_{ijt}}{\sum_{j} m_{ijt}} S^d_{jt}$).²

Keller re-estimates the equation substituting the import-weighted sum of R&D stock with the simple sum of the rest of the world stock of R&D ($S^f_{Kit} = \sum_{j \neq i} S^d_{jt}$) and shows that this gives rise to a higher point estimate of the TFP elasticity with respect to the foreign R&D and a better fitness of the regression. Hence, he concludes that “the composition of imports of a country plays no particular role in estimating a positive and significant impact from foreign R&D on domestic productivity levels” (1998, p.1479).³

Somehow at the risk of overstating Keller’s position, this can be considered equivalent to an hypothesis of a “global pool” of technology. A simple way to test formally this hypothesis is to start from Keller’s original specification (to which we add human capital (H_{it}) among the regressors as in Engelbrecht (1997)):

$$\log F_{it} = α_i + β^h \log H_{it} + β^d \log S^d_{it} + β^f \log S^f_{Kit} + \epsilon_{it} \tag{2}$$

One can then write a more general, nonlinear model that nests Equation (2) as a specific case. In this work, we propose to consider the following nonlinear form:

$$\log F_{it} = α_i + β^h \log H_{it} + β^d \log S^d_{it} + β^f \log (S^f_{itA} + \iota(S^f_{Kit} - S^f_{itA})) + \epsilon_{it} \tag{3}$$

where $S^f_{itA} = \sum_{j \in A_i \setminus \{i\}} S^d_{jt}$ and A_i is a subset of the set of countries, so that S^f_{itA} is the simple sum of the R&D stocks of the foreign countries belonging to a particular subset of the world, which can vary across countries.

If spillovers were truly global and trade-unrelated, so that all countries could absorb knowledge from a common and global pool, then the coefficient ι would not significantly differ from unity, no matter the partition of countries (i.e. the actual A_i for each country i). In such a case, the nonlinear model (3) would simplify in (2). Hence, given a set of subsets A, one can estimate equation (3) by Nonlinear Least Squares (NLS), and then test the null hypothesis $H_0 : \iota = 1$ against the alternative $H_1 : \iota \neq 1$.⁴

To maintain the comparability with Keller (1998) and Coe and Helpman (1995), while extending the dataset, we test the hypothesis on a sample of 24
OECD countries over the period 1971-2004, using the data on R&D stock, human capital and TFP indexes from Coe et al. (2009).

We draw 24 random subsets \(A_i \) (one for each of the countries in the sample) out of the \(2^{24} \) possible ones, with each country having probability 1/2 of belonging to the subset of any other country. The expected number of countries belonging to \(A_i \setminus \{i\} \) for each country \(i \) is therefore binomially distributed with expected value \(23 \times 1/2 = 11.5 \). We repeat this exercise 1000 times and estimate 1000 different models (3), assigning each time a different random subset \(A_i \) out of the 1000 previously drawn for each one of the 24 countries in the sample. With respect to each estimation we test the null \(H_0 : \iota = 1 \).

Since we are looking at 1000 independent estimates, in order to reject the null with a significance level \(\alpha \) for all the randomizations, we need to set a significance level of \(\alpha_0 = 1 - (1 - \alpha) \frac{1}{1000} \) for the single test and reject the null when at least one of the 1000 tests rejects it with \(\alpha_0 \).\(^5\) So, for instance, when \(\alpha = 0.01 \), the value of \(\alpha_0 \) is \(1.00503 \times 10^{-5} \).

Our results, reported in Table 1, show that the global pool hypothesis is strongly rejected by the data.\(^6\) Out of 431 cases in which convergence is achieved, the F-test rejects 82 times (i.e. around 20% of the cases) the null at a significance level of \(\alpha = 0.01 \times 10^{-5} \). We recall that, had the global pool hypothesis been correct, we would have rejected the null in none of the randomized partitions.\(^7\)

Since the data strongly reject the hypothesis that R&D spillovers are global and trade-independent, in the next Section we analyze the impact of trade and geographical proximity on R&D spillovers and assess whether international trade appears positively related with R&D spillovers simply because it correlates with

\(^5\) The probability of Type I error in at least one of the independent tests is:

\[
\alpha = 1 - (1 - \alpha_0)^{1000}
\]

where \(\alpha_0 \) is the probability of Type I error in each test.

\(^6\) NLS is estimated with Gretl 1.9.3 (http://gretl.sourceforge.net/), by the Levenberg-Marquardt algorithm with analytical derivatives and 2900 max iterations.

\(^7\) The convergence criterion is not met in more than half of the repetitions mainly because the estimate of \(\iota \) associated with some random partitions of the countries would take negative values (that render negative the argument of the log). On this basis one could rule out that the null hypothesis could be retained in the 569 non-converging cases and this would make our results even stronger. This notwithstanding, to lean on the cautionary side, we focus exclusively on the cases in which the convergence criterion is met.
geographical proximity, which is in fact the actual driver of the spillovers.

3. Is trade proxying for geographical proximity?

To consider both distance and trade in the diffusion of knowledge and to test for the relevance of trade once accounting for geographical proximity, we introduce international trade in a slightly different version of the specification proposed in Keller (2002), where only distance appears as a determinant of knowledge spillovers:

$$\log F_{it} = \alpha_i + \beta_h \log H_{it} + \beta_d \log S_{dit}^d + \beta_f \log \left(\sum_{j \neq i} S_{jt}^d e^{-\delta D_{ij}} \right) + \epsilon_{it} \quad (4)$$

where D_{ij} is the geodesic distance between the capital cities of country i and country j, normalized so that the minimum smallest bilateral distance in the sample (that between Belgium and the Netherlands – 173.03 kilometers) is equal to one.

This can be seen as a nested version of a more general model that, following the specifications of Coe and Helpman (1995), also allows for a distance-unrelated role played by international trade in affecting R&D spillovers:

$$\log F_{it} = \alpha_i + \beta_h \log H_{it} + \beta_d \log S_{dit}^d + \beta_f \log \left(\sum_{j \neq i} S_{jt}^d e^{-\delta D_{ij}} \right) + \beta_{fm} m_{it} \log \left(\sum_{j \neq i} S_{jt}^d e^{-\delta D_{ij}} \right) + \beta_m m_{it} + \epsilon_{it} \quad (5)$$

Some hints of the superior performance of Coe and Helpman’s (1995) trade-related measure of R&D over Keller’s (1998) one emerge from the dynamic OLS (DOLS) estimates done using the enlarged sample of Coe et al. (2009), where leads and lags of first differenced independent variables are added to the original equation so as to obtain coefficient estimates with better limiting distribution properties (see Kao et al., 1999). Results are reported in the Appendix A.

In fact, Keller’s (2002) original specification is at the industry level. Moreover, its exact aggregate version is slightly different from Equation 4 and would look like

$$\log F_{it} = \alpha_i + \gamma t + \beta \log \left(S_{it}^d + \sum_{j \neq i} S_{jt}^d e^{-\delta D_{ij}} \right) + \epsilon_{it}$$

The differences between the latter and Equation 4 are that: i) we introduce human capital; ii) we separate domestic from foreign R&D stock because, following Coe and Helpman (1995), we allow for a systematic difference between the TFP elasticities of domestic vs. foreign R&D stock; iii) we do not include time dummies. We estimate the different specifications also with time dummies, but they always show a worse fit. The results are reported and discussed in Appendix B.

As also noted by Keller (2002), this normalization amounts to a change in the measurement unit of distance and it does not affect elasticities. However, it does affect the size of δ. Therefore, because of the different minimum distance in the sample (that in Keller (2002) is the distance between Germany and the Netherlands, which is 3.34 times the distance between the Netherlands and Belgium), our estimates of δ cannot be directly compared with his. To do so, one would need to divide (multiply) his (our) value by 3.34.
where \(m_{it} \) is the share of imports on GDP in country \(i \).

In Equation (5), the sum of the elasticities of productivity with respect to the foreign R&D stocks is not constant as in Equation (4), but it is an increasing function of the share of imports in the domestic economy:\(^{11}\)

\[
\sum_{j \neq i} \frac{\partial \log F_{it}}{\partial \log S_{jt}^d} = \beta_f + \beta_f m_{it}
\]

(6)

In turn, the marginal effect of the import share on the log TFP is an increasing function of the distance-weighted foreign R&D stock:

\[
\frac{\partial \log F_{it}}{\partial m_{it}} = \beta_m + \beta_f m_{it} \log \left(\sum_{j \neq i} S_{jt}^d e^{-\delta D_{ij}} \right)
\]

(7)

If R&D spillovers were mainly trade-unrelated knowledge spillovers limited by geographical distance and/or rent-spillovers originated by trade in intermediates constrained by transport costs exponentially increasing with distance (as in the theoretical model by Keller (2002)), Equation (5) would simplify to (4). On the contrary, if international trade were an additional source of R&D spillovers (e.g., in case of trade-related knowledge spillovers), the marginal impact of trade on productivity – Equation (7) – and the effect of trade on the TFP elasticity of foreign R&D stocks – \(\beta_f m \) in Equation (6) – would be positive.\(^{12}\)

Equation (5) does not impose any cross restriction on the estimated elasticity of TFP with respect to the import share and the foreign R&D capital stock because these latter and their interaction are all included in the estimation. However, as shown by Coe et al. (2009), panel unit root tests reject the null of unit root for \(m \) in all groups and Edmond (2001) shows that, in all the linear specifications where \(m \) is included as an independent regressor, Pedroni’s (2004) test retains the null of no cointegration. Therefore, in order to reduce the risk of spurious regressions due to the improper inclusion of a stationary \(m \), we estimate also the following specification:

\[
\log F_{it} = \alpha_i + \beta_h \log H_{it} + \beta_d \log S_{it}^d + \left(\beta_f + \beta_f m_{it} \right) \log \left(\sum_{j \neq i} S_{jt}^d e^{-\delta D_{ij}} \right) + \epsilon_{it}
\]

(8)

where \(m \) does not appear as an independent regressor.

\(^{11}\)The elasticity of the country \(i \)’s TFP with respect to the R&D stock of country \(j \) is:

\[
\frac{\partial \log F_{it}}{\partial \log S_{jt}^d} = \frac{\partial \log F_{it}}{\partial S_{jt}^d} \left(\frac{d \log S_{jt}^d}{dS_{jt}^d} \right)^{-1} = (\beta_f + \beta_f m_{it}) \frac{\sum_{c \neq i} S_{ct}^e e^{-\delta D_{ic}}}{\sum_{c \neq i} S_{ct}^e e^{-\delta D_{ic}}}
\]

\(^{12}\)We focus our discussion on the estimates of these combined parameters rather than on the individual estimated parameters because the individual coefficients of interacting variables do not typically have a direct interpretation.

Table 2: Estimation results (Pooled data 1971-2004 for 24 countries: 816 observations)

<table>
<thead>
<tr>
<th></th>
<th>I - eq. 4</th>
<th>II - eq. 5</th>
<th>III - eq. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_h</td>
<td>0.527***</td>
<td>0.515***</td>
<td>0.490***</td>
</tr>
<tr>
<td></td>
<td>(0.0516)</td>
<td>(0.0466)</td>
<td>(0.0483)</td>
</tr>
<tr>
<td>β_d</td>
<td>0.038***</td>
<td>0.029***</td>
<td>0.044***</td>
</tr>
<tr>
<td></td>
<td>(0.0084)</td>
<td>(0.0073)</td>
<td>(0.0078)</td>
</tr>
<tr>
<td>β_f</td>
<td>0.168***</td>
<td>0.057**</td>
<td>0.128***</td>
</tr>
<tr>
<td></td>
<td>(0.0153)</td>
<td>(0.0147)</td>
<td>(0.0167)</td>
</tr>
<tr>
<td>δ</td>
<td>0.046***</td>
<td>0.069***</td>
<td>0.064***</td>
</tr>
<tr>
<td></td>
<td>(0.0116)</td>
<td>(0.0104)</td>
<td>(0.0085)</td>
</tr>
<tr>
<td>β_{fm}</td>
<td>0.358***</td>
<td>0.363***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0525)</td>
<td>(0.0079)</td>
<td></td>
</tr>
<tr>
<td>β_m</td>
<td>-4.370***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.7805)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_f + \beta_{fm}\bar{m}$</td>
<td>0.165***</td>
<td>0.139***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0139)</td>
<td>(0.0153)</td>
<td></td>
</tr>
<tr>
<td>$\beta_m + \beta_{fm}\log \bar{S}_f$</td>
<td>0.401***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0588)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_{fm}\log \bar{S}_f$</td>
<td>0.487***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0982)</td>
</tr>
<tr>
<td>AIC</td>
<td>-1624.8</td>
<td>-1766.1</td>
<td>-1681.9</td>
</tr>
<tr>
<td>BIC</td>
<td>-1493.1</td>
<td>-1624.9</td>
<td>-1545.5</td>
</tr>
</tbody>
</table>

$\bar{m} \approx 0.3$ is the median import share in the sample.

$\bar{S}_f = \left(\sum_{j \neq i} \bar{S}_d^{jt}e^{-\delta D_{ij}}\right)$, where the bar stands for the median value in the sample.

Unreported country dummies. Bootstrapped standard errors robust to serial and cross sectional dependence (or heteroskedasticity-asymptotically robust standard errors – variant HC1 – when larger than bootstrapped ones) in parentheses. Coefficient significance based on bootstrapped two-tailed confidence intervals. Significance levels: * 10%; ** 5%; *** 1%.

On the one hand, the latter specification necessarily imposes some cross restrictions on the estimated elasticity of TFP (see Lichtenberg and van Pottelsberghe de la Potterie, 1998; Coe and Hoffmaister, 1999). On the other hand, when δ is taken as given, it is similar to the specifications estimated and discussed in Coe et al. (2009) and panel cointegration cannot be rejected by the data.

The results of our estimations are reported in Table 2. As inference based on bootstrapped standard errors tends to be more reliable, for all the specifications we compute bootstrapped standard errors and report the coefficient significance based on bootstrapped confidence intervals. To be conservative, we report asymptotically robust standard (HC1) errors when they are larger than the bootstrapped ones. In particular, we employ the panel moving blocks bootstrap, proposed and discussed by Gonçalves (2011) in the context of linear panels with

13The data on countries’ distance are borrowed from CEPII.
individual fixed effects, with a block size equal to 2.\(^\text{14}\)

Results confirm Keller’s (2002) finding that R&D spillovers decline with the geographic distance between sender and recipient countries and provide further evidence that productivity spillovers of R&D are geographically localized. Given the estimates of \(\delta\), the implied “half-life distance of technology”, that is the distance at which only half of the foreign country’s R&D stock is domestically available,\(^\text{15}\) ranges roughly from 10 to 15 times the distance between Belgium and the Netherlands (i.e. 1,750 to 2,600 kilometers). In models II and III (respectively Equations (4) and (5)), the estimated decay rate increases, pointing to a possible underestimation in model I because of the omission of trade among the regressors, which is positively correlated with TFP and negatively correlated with distance.\(^\text{16}\)

What is important is that, even when distance is accounted for, trade remains an additional source of R&D spillovers. In particular, the marginal impact of the countries’ import share on productivity calculated at the median value of the distance-weighted foreign R&D stock – \(\beta^m + \beta^m \log \bar{S}^f\) in model II (Equation (5)) and \(\beta^m \log \bar{S}^f\) in model III (Equation (8)) – is positive and significant. The elasticity of the distance-weighted R&D stock positively depends on the import-share (\(\beta^m\) is positive and significant in both models II and III).

Hence, geographic distance is not the only “actual” driver of R&D spillovers and there are important trade-related knowledge spillovers which can significantly increase the impact of foreign R&D on domestic productivity.

4. Conclusions

Notwithstanding a rich literature on the international R&D spillovers, whether the effects on productivity of R&D are global or localized and trade-related or trade-unrelated still remains an open empirical issue as evidence has been provided in support of both hypotheses. A case in point is the work of Wolfgang Keller, who presents contrasting findings in different works (i.e. Keller, 1998, 2002, 2004) adopting different (and non nested) empirical specifications.

By using the enlarged sample of Coe et al. (2009) and adopting two empirical specifications that nest the various models proposed by Keller, we test the hypotheses that spillovers are global (localized) and trade-unrelated (trade-related).

\(^\text{14}\)In the panel moving blocks bootstrap (MBB), a standard MBB is applied to the vector containing the individual observations at each point in time. Like the standard MBB, the panel MBB is robust to serial dependence of unknown form as long as it satisfies a mixing type condition. Furthermore, because it does not resample the individual observations directly, this bootstrap is also robust to any arbitrary form of cross sectional dependence. See Gonçalves (2011) for details.

\(^\text{15}\)Because of the exponential specification, this distance is assumed to be constant, and it is equal to \(\ln 2/\delta\).

\(^\text{16}\)Our estimates are however in general lower than those reported in Keller (2002), where the half-life of technology ranges from 162 to about 1,200 kilometers in his preferred specification.
In particular, we carry out a simple test based on a randomization of the original model in Keller (1998) to test the hypothesis of a “global pool” of technology, which we strongly reject. On this basis we investigate further the determinants of these localized spillovers.

By nesting the model proposed in Keller (2002) to analyze the impact of geographical distance on R&D spillovers in a more general model that is able to account for both trade and distance, we test the hypothesis that international trade appears positively related with R&D spillovers simply because it correlates with geographical proximity, which is instead the “actual” driver of the spillovers. This would be true if R&D spillovers were mainly trade-unrelated knowledge spillovers and trade-related spillovers were in fact rent-spillovers originating from trade in intermediates limited by geographic distance that increases transport costs.

We reject also this hypothesis and show that R&D spillovers depend on both geographical distance and international trade. Even when distance is accounted for, trade remains an important source of productivity spillovers and considerably increases the elasticity of TFP with respect to the distance-weighted foreign R&D stock.

Acknowledgements

The authors are grateful to the Department of Economics of the University of Trento and the OPENLOC research project (sponsored by the Autonomous Province of Trento) for financial support. They also thank Roberto Golinelli, Stefano Schiavo and Maria Luigia Segnana for valuable comments and suggestions.

Appendixes

A. Dynamic OLS estimates

To fully exploit the cointegrating properties of the series, one can calculate the dynamic OLS (DOLS) estimates where leads and lags of first differenced independent variables are added to the original equation to obtain coefficient estimates with better limiting distribution properties (see Kao et al., 1999).

In the following table, we report the DOLS estimates (including unreported country-dummies) and compute Newey-West standard errors (in parenthesis) for the original specifications proposed by Coe and Helpman (1995) (Model I in this appendix) and Keller (1998) (Model II in this appendix). On the basis of the Akaike Information Criterion, we include one lead and two lags of first differenced variables for model I (720 observations) and a lag of order two of first differenced variables in model II (744 observations).
The elasticity of TFP with respect to log S_{CH}^f is higher than with respect to log S_f^K and its standard error lower. This hints to a superior performance of Coe and Helpman’s (1995) measure over Keller’s (1998).

B. Estimates with time dummies

As a robustness check, we re-estimate all the models discussed in Section 3 with the inclusion of time dummies. Results are reported in Table 3. Information criteria are all worse than those of the respective models without time dummies. The qualitative results are all confirmed. The point estimates with and without time dummies are fairly similar for models III and I. The main difference is in model II the higher point estimates of β_f and β_{fm}, which produce a strongly higher estimate of the elasticity of the distance-weighted foreign R&D stock (valued at the median import share: $\beta_f + \beta_{fm} \bar{m}$). Such estimate is not in line with the estimates of this elasticity in all the other models, although also associated with a high standard error.

Because of the cointegration issues, possibly magnified by the inclusion of time dummies in model II, the lower information criteria with respect to the models without time dummies; and the fact that the estimated elasticity in all the other models are fairly similar, this result should not be given too much emphasis.

<table>
<thead>
<tr>
<th></th>
<th>log H</th>
<th>log S_d^f</th>
<th>log S_{CH}^f</th>
<th>log S_K^f</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.710571***</td>
<td>0.060832</td>
<td>0.126415**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.146073)</td>
<td>(0.043420)</td>
<td>(0.051484)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0.607976***</td>
<td>0.066295</td>
<td>0.107212*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.180654)</td>
<td>(0.046932)</td>
<td>(0.061269)</td>
<td></td>
</tr>
</tbody>
</table>

17Levin et al.’s (2002) and Im et al.’s (2003) panel unit root tests both retain the null of a unit root in all groups for the residuals of the regressions of log F and log S_d^f on time dummies; while they both reject the null at the 1% significance level for the residuals of the regression of m on time dummies.
<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>β^h</td>
<td>0.542***</td>
<td>0.643***</td>
<td>0.515***</td>
</tr>
<tr>
<td></td>
<td>(0.0586)</td>
<td>(0.0717)</td>
<td>(0.0602)</td>
</tr>
<tr>
<td>β^d</td>
<td>0.038***</td>
<td>0.021***</td>
<td>0.046***</td>
</tr>
<tr>
<td></td>
<td>(0.0081)</td>
<td>(0.0079)</td>
<td>(0.0086)</td>
</tr>
<tr>
<td>β^f</td>
<td>0.130**</td>
<td>0.348***</td>
<td>0.148***</td>
</tr>
<tr>
<td></td>
<td>(0.0787)</td>
<td>(0.1360)</td>
<td>(0.0861)</td>
</tr>
<tr>
<td>δ</td>
<td>0.053***</td>
<td>0.047***</td>
<td>0.063***</td>
</tr>
<tr>
<td></td>
<td>(0.0174)</td>
<td>(0.0066)</td>
<td>(0.0145)</td>
</tr>
<tr>
<td>$\beta^f m$</td>
<td>0.539***</td>
<td>0.044***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0655)</td>
<td>(0.0091)</td>
<td></td>
</tr>
<tr>
<td>β^m</td>
<td>-6.875***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.9019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta^f + \beta^f m \tilde{m}$</td>
<td>0.509***</td>
<td>0.161***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1385)</td>
<td>(0.0859)</td>
<td></td>
</tr>
<tr>
<td>$\beta^m + \beta^f m \log \bar{S}_f$</td>
<td>0.487***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0661)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta^f m \log \bar{S}_f$</td>
<td></td>
<td>0.585***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0897)</td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>-1570.500</td>
<td>-1754.303</td>
<td>-1636.154</td>
</tr>
<tr>
<td>BIC</td>
<td>-1283.531</td>
<td>-1457.925</td>
<td>-1344.480</td>
</tr>
</tbody>
</table>

$\tilde{m} \approx 0.3$ is the median import share in the sample.

$\bar{S}_f = \left(\sum_{j \neq i} \bar{S}_{dj} e^{-\delta D_{ij}} \right)$, where the bar stands for the median value in the sample.

Unreported unit and time dummies. Bootstrapped standard errors robust to serial and cross sectional dependence (or heteroskedasticity-asymptotically robust standard errors – variant HC1 – when larger than bootstrapped ones) in parentheses. Coefficient significance based on bootstrapped two-tailed confidence intervals. Significance levels: * 10%; ** 5%; *** 1%.
References

Elenco dei papers del Dipartimento di Economia
pubblicati negli ultimi due anni

2009.2 *Clusters of firms in space and time*, Giuseppe Arbia, Giuseppe Espa, Diego Giuliani e Andrea Mazzitelli

2009.3 *A note on maximum likelihood estimation of a Pareto mixture*, Marco Bee, Roberto Benedetti e Giuseppe Espa

2009.4 *Job performance and job satisfaction: an integrated survey*, Maurizio Pugno e Sara Depedri

2009.5 *The evolution of the Sino-American co-dependency: modeling a regime switch in a growth setting*, Luigi Bonatti e Andrea Fracasso

2009.6 *The Two Triangles: What did Wicksell and Keynes know about macroeconomics that modern economists do not (consider)?* Ronny Mazzocchi, Roberto Tamborini e Hans-Michael Trautwein

2009.7 *Mobility Systems and Economic Growth: a Theoretical Analysis of the Long-Term Effects of Alternative Transportation Policies*, Luigi Bonatti e Emanuele Campiglio

2009.8 *Money and finance: The heterodox views of R. Clower, A. Leijonhufvud and H. Minsky*, Elisabetta de Antoni

2009.9 *Development and economic growth: the effectiveness of traditional policies*, Gabriella Berloffa, Giuseppe Folloni e Ilaria Schnyder

2009.10 *Management of hail risk: insurance or anti-hail nets?*, Luciano Pilati, Vasco Boatto

2010.1 *Monetary policy through the "credit-cost channel". Italy and Germany pre- and post-EMU*, Giuliana Passamani, Roberto Tamborini

2010.2 *Has food price volatility risen?* Christopher L. Gilbert and C. Wyn Morgan

2010.3 *Simulating copula-based distributions and estimating tail probabilities by means of Adaptive Importance Sampling*, Marco Bee

2010.4 *The China-US co-dependency and the elusive costs of growth rebalancing*, Luigi Bonatti and Andrea Fracasso

2010.5 *The Structure and Growth of International Trade*, Massimo Riccaboni and Stefano Schiavo
2010.6 The Future of the Sino-American co-Dependency, Luigi Bonatti and Andrea Fracasso

2010.7 Anomalies in Economics and Finance, Christopher L. Gilbert

2010.8 Trust is bound to emerge (In the repeated Trust Game), Luciano Andreozzi

2010.9 Dynamic VaR models and the Peaks over Threshold method for market risk measurement: an empirical investigation during a financial crisis, Marco Bee e Fabrizio Miorelli

2010.10 Creativity in work settings and inclusive governance: Survey based findings from Italy, Silvia Sacchetti, Roger Sugden e Ermanno Tortia

2010.11 Food Prices in Six Developing Countries and the Grains Price Spike, Christopher L. Gilbert

2010.12 Weighting Ripley’s K-function to account for the firm dimension in the analysis of spatial concentration, Giuseppe Espa, Diego Giuliani, Giuseppe Arbia

2010.13 I Would if I Could: Precarious Employment and Childbearing Intentions in Italy, Francesca Modena e Fabio Sabatini

2010.14 Measuring industrial agglomeration with inhomogeneous K-function: the case of ICT firms in Milan (Italy), Giuseppe Espa, Giuseppe Arbia e Diego Giuliani

2010.15 Dualism and growth in transition economies: a two-sector model with efficient and subsidized enterprises, Luigi Bonatti e Kiryl Haiduk

2010.16 Intermediaries in International Trade: Direct Versus Indirect Modes of Export, Andrew B. Bernard, Marco Grazzi e Chiara Tomasi

2010.17 Production and Financial Linkages in inter-firm Networks: Structural Variety, Risk-sharing and Resilience, Giulio Cainelli, Sandro Montresor e Giuseppe Vittucci Marzetti

2010.18 Organizational Capital and Firm Performance. Empirical Evidence for European Firms, Claudia Tronconi e Giuseppe Vittucci Marzetti

2011.1 Leaving home and housing prices. The Experience of Italian youth emancipation, Francesca Modena and Concetta Rondinelli.
2011.2 *Pareto versus lognormal: a maximum entropy test*, Marco Bee, Massimo Riccaboni and Stefano Schiavo.

2011.3 *Does a virtuous circle between social capital and CSR exist? A “network of games” model and some empirical evidence*, Giacomo Degli Antoni e Lorenzo Sacconi

2011.5 *Chinese reserves accumulation and US monetary policy: Will China go on buying US financial assets?*, Luigi Bonatti e Andrea Fracasso

2011.6 *Taking Keller seriously: trade and distance in international R&D spillovers*, Andrea Fracasso e Giuseppe Vittucci
Taking Keller seriously: trade and distance in international R&D spillovers

Luciano Andreozzi, Andrea Fracasso, Giuseppe Vittucci Marzetti