Chinese reserves accumulation and US monetary policy: Will China go on buying US financial assets?
Luigi Bonatti, Andrea Fracasso
Chinese reserves accumulation and US monetary policy: Will China go on buying US financial assets?

Luigi Bonatti, Andrea Fracasso
Chinese reserves accumulation and US monetary policy: Will China go on buying US financial assets?

Luigi Bonatti*
University of Trento

Andrea Fracasso°
University of Trento

March 2011

Abstract

It has been argued that China may stop financing the US external deficit, appreciate the currency, increase consumption and move its economy away from tradables and towards nontradables. Our two-country model shows that paradoxically this policy option is unattractive if the US authorities keep monetary policy sufficiently loose, thus reducing the real value of the US liabilities held by China. As long as the American and Chinese authorities pursue complementary objectives, the current China-US arrangement continues. In addition, an untimely appreciation of China’s real exchange rate may have negative consequences on employment in the US and in China.

Keywords: China-US co-dependency; global imbalances; reserve accumulation; external debt.

JEL codes: F32, F41

*Luigi Bonatti
luigi.bonatti@unitn.it; Dipartimento di Economia, Università di Trento, via Inama 5, 38122 Trento, Italy

°Andrea Fracasso (corresponding author)
andrea.fracasso@unitn.it; Dipartimento di Economia, Università di Trento, via Inama 5, 38122 Trento, Italy
1. INTRODUCTION

It has been argued that China may be tempted to stop financing the US external deficit, increase its consumption, and move its economy away from tradables and towards nontradables. In this paper we present a two-country model that shows that this policy option can be unattractive if the US monetary policy is sufficiently loose. This conclusion may sound paradoxical in the light of some conventional wisdom maintaining that US quantitative easing could induce the Chinese authorities to reverse their current policy of accumulating US financial assets (see Figure 1). However, this result sheds some light on the reasons why the Chinese policymakers have so far held on to their strategy and probably will continue to do so for a while.

![Chinese official reserves and holdings of US Treasuries. Sources: IMF IFS and US Treasury (TIC)](image)

The insurgence and the persistence of large current account imbalances, and in particular of the highly unbalanced relationship between China and the US (with China recently accounting for more than 40% of US current account deficits), have been widely investigated. According to the literature, global imbalances owe both to global factors – for instance, the lack of sound non-US investment opportunities after the Asian crisis (Caballero et al., 2008; Mendoza et al., 2009) and the emergence of a global saving glut in the 2000s (Bernanke, 2005)-, and to country-specific domestic determinants, such as the extremely high (low) saving rates in China (US) (Blanchard and Giavazzi, 2006; Chamon and Prasad, 2010; Roubini and Setser, 2004; Laibson and Mollerstrom, 2011) and
the undervaluation of the Chinese currency (Blanchard et al., 2005; Obstfeld and Rogoff, 2007; Rodrik 2008). As argued elsewhere (Bonatti and Fracasso, 2010a), these domestic determinants should not be interpreted in isolation but rather in the light of the policy regimes adopted by the authorities to pursue their country-specific political objectives.

Focusing on the US and China for the sake of simplicity, this amounts to arguing that persistent external imbalances are rooted in the symbiotic relationship between the different growth paradigms adopted in the two countries, in line with the “Sino-American co-dependency” view proposed by Dooley et al. (2003, 2004a,b, 2009). China has purposefully maintained an undervalued exchange rate (mainly against the US dollar) to foster its economic growth, through export promotion, and to facilitate the mobilization of its labour force into the highly productive sectors of the economy. To this end, China has tightly controlled the international financial flows and accumulated (and sterilised) an impressive amount of foreign exchange rate reserves, equal to about $3 trillion in early 2011. The US, in turn, has exploited the Chinese willingness to finance its current account deficits so as to maintain high domestic consumption, while ensuring low yields on US Treasury bonds. As claimed by Feldstein (2011), the US large external deficits reflected a combination of public budget deficits and low household saving, this latter in turn influenced by government policies discouraging personal saving.

There has been a widespread consensus in the literature and among political commentators that the massive accumulation of foreign reserves pursued by China has reflected both mercantilist and self-insurance purposes (Aizenman and Lee, 2008). Not much attention, however, has been given to the reasons why this strategy has been carried on for such a long period of time (and to the

1 See Blanchard and Milesi-Ferretti (2009) and Eichengreen (2006) for an overview.
2 In 1994/1995, the Chinese authorities started pegging the renminbi to the US dollar. The peg was substituted by a managed float with reference to a basket of currencies in 2005. The renminbi has gradually appreciated, passing from 8.28 RMB per dollar in 2005 to 6.5 RMB per dollar in February 2011. For an overview of the evolution of the Chinese exchange rate regime, see Ferguson and Schularick (2009), Frankel (2009), Frankel and Wei (2007).
3 According to Prasad and Sorkin (2009), Chinese current account surpluses accounted for 91% of the huge accumulation of exchange rate reserves occurred from 2004 to 2008.
observed extent) despite its inherent costs. In this work, we tackle this issue by developing an original two-country two-period macroeconomic model able to trace some qualitative aspects of the Sino-American co-dependency story (such as the export-led growth due to an undervalued exchange rate and sterilised reserves accumulation, marked consumption repression and high household savings in China, and a large trade deficit and overconsumption in the US). We investigate whether reserves hoarding has served the Chinese policy goals and has been compatible with the US ones: we show that this has been the case, at least as far as the Chinese and US policy objectives can be summarized as the maximisation, respectively, of domestic GDP and of domestic consumption. The juxtaposition of different policy objectives helps to understand why China has not yet stopped financing the US external deficits to increase Chinese consumption by depleting the stock of foreign reserves (thus, moving the economy from the production of tradables towards nontradables).

In a nutshell, the model reveals that, provided the Chinese authorities aim to maximize the size of domestic GDP rather than consumption (as confirmed by the remarkable and persistence repression of private consumption), they better gear a policy regime that concentrates the labour force in either one of tradable and nontradable sectors as GDP tends to be higher when labour is unevenly allocated across the tradable and nontradable sectors. Importantly, the private choices and the policy measures adopted in the US affect which sector China should aim to foster. Thus, if the US authorities want to maximise the consumption of the US consumers, they have an incentive to conduct a sufficiently loose monetary policy so as to make relatively convenient for China to adopt and maintain an export-led growth strategy. If the US monetary policy is too tight, the real value of

4 A number of studies advocated a rapid rebalancing of the Chinese growth away from external demand and investment, and toward domestic demand and consumption (see, among the others, Blanchard and Giavazzi, 2006; Prasad, 2009; Prasad and Rajan, 2006; Straub and Thimann, 2010; Zheng et al., 2009), on the basis that the costs associated with the maintenance of the strategy would be larger than those stemming from a reversal of the policy.

5 In addition, we show in a companion paper (Bonatti and Fracasso, 2010b) that reverting the Chinese strategy might have some undesirable consequences on both countries: the Chinese rate of growth may be reduced and the maintenance of full employment and high levels of consumption in the US may be jeopardized.
the US financial assets held by China may increase and lure the Chinese authorities to deplete the accumulated stocks of US assets, to stop financing the US external deficit and to let appreciate the currency.

This theoretical model allows to depict the past and current relationship between the Sino-American exchange rate regime, on the one hand, and the policy objectives of the authorities both in the US and in China, on the other hand. However, the model is also conducive to predictions that help appreciate the future evolution of the China-US co-dependency. For instance, the model suggests that, unless a deflationary process takes place in the US or unless the Chinese authorities decide to let domestic consumption expand more rapidly than in the past, the current Chinese strategy will not be rapidly reversed and China will keep on accumulating US assets. To make sure that a policy reversal will not occur (as this would reduce consumption opportunities to the US citizens), the American authorities have an incentive to conduct a sufficiently loose monetary policy. This is not, as often thought, out of an attempt to inflate the debt away, but rather in order to preserve the convenience for China to stick to its export-led cum reserve accumulation growth strategy.

Aizenman and Lee (2010) represents the closest attempt to investigate the reasons why a mercantilist approach, characterised by an undervalued exchange rate and the accumulation of foreign reserves, has so far represented a viable policy regime for the Chinese authorities. The authors show that a learning-by-doing externality in the production of tradables calls for an undervalued exchange rate because the latter may be used as a tool to internalize the externality. Besides the different mechanisms driving growth in their and in our models, our work differs from theirs in that we consider both the US and the Chinese objectives and policy measures and their interaction, rather than focusing on China in isolation. This is of utmost importance if the Sino-US unbalanced relationship is to be interpreted as the result of a mutually beneficial relationship between countries pursuing different, but complementary goals.

6 On the possibility that the US may inflate its debt away, see e.g. Aizenman and Marion (2009).
Without stretching the model too much, some lessons for the future of the Sino-US relationship could be drawn from our analysis. The first one is that the duration of the exchange rate undervaluation cum reserve accumulation strategy is not determined by the size of the Chinese foreign reserves per se. In fact, it is mainly influenced by the convenience for the Chinese authorities to maintain their productive specialization on tradables and keep consumption compressed rather than expand the production of nontradables and domestic consumption. Second, we show that this convenience depends also on the US monetary policy stance. The third lesson is that the standard of living that the Chinese authorities desire to guarantee to their citizens is key to determine the likelihood of a policy regime change: the higher the pursued standard, the more likely the occurrence of a reversal. Finally, given that in the US a larger share of the labour force is employed in the nontradable sector than in China, the immediate effects of an appreciation of the renminbi on total employment may be negative in both countries, thereby increasing the number of unemployed people in the US and swelling the ranks of workers employed in the backward sectors of the Chinese economy.

The remainder of the paper proceeds as follows. The building blocks and the derivation of the model are discussed in section 2, while the characterization of the equilibrium is presented in section 3. Section 4 concludes.

2. THE MODEL

The world economy includes two countries, US and China. Three market goods are produced in this world economy: an internationally tradable good that is produced in both countries, an (internationally) nontradable good that is produced and sold in US, and an (internationally) nontradable good that is produced and sold in China. Hence, in both countries there are firms specialized in the production of tradable goods and firms specialized in the production of nontradable goods. The tradable good is used as capital in the production of both goods and as
consumption good, while the nontradable good can be only consumed. Labour is internationally immobile but can freely move across sectors within each country. Labour that is not employed in the two market sectors undertakes non-market activities. In the case of China, the latter can be interpreted as those low-productive activities that are typical of rural areas.

Goods and labour markets are perfectly competitive. Both countries are populated by households that supply labour, buy the consumer goods, accumulate financial assets and hold money. Moreover, each country has its own government sector. The policy regime governing the world financial markets is characterized by the fact that the Chinese authorities fix the nominal exchange rate and permit only official transactions in financial assets. In line with their public announcements and actual choices, we assume that the Chinese authorities aim at reaching the highest level of GDP that is consistent with the achievement of an acceptable level of households’ consumption. Indeed, this objective is functional to fasten China’s catching-up and to enhance its international status, although it has costs in terms of households’ welfare. In contrast, the US authorities are assumed to maximize the consumption of the representative household.

There is no source of random disturbances and agents’ expectations are rational (in the sense that they are consistent with the true processes followed by the relevant variables), thus implying perfect foresight. Finally, time is discrete and—for the sake of simplicity but without loss of generality—two periods are considered: the present and the future.

7 As argued by Turnovsky (1997), there is no agreed conclusion on the share of tradables and nontradables in total investment. For some evidence on the issue, see Bems (2008).

8 The distinction between two main sectors (tradables and nontradables) and the assumption that labour is mobile across sectors but not across countries while the capital good is mobile both across sectors and countries are consistent with the standard trade model developed by Obstfeld and Rogoff (1996, Chapter 4). We extend this framework by introducing a technological spillover in both sectors.
Firms producing the (internationally) nontradable good

In each country j, j=us, ch, there is a large number (normalized to be one) of identical firms, which—in each period t, t=0,1—produce the nontradable good Y_{jNt}. This good is not storable and must be immediately consumed. 9 Firms produce Y_{jNt} according to the following technology:

$$Y_{jNt} = A_{jNt} K_{jNt}^{1-\gamma_j} L_{jNt}^{\gamma_j}, 0 < \gamma_j < 1,$$

(1)

where K_{jNt} and L_{jNt} are, respectively, the capital stock and the labour input used in country j to produce the (internationally) nontradable market good Y_{jNt}, and A_{jNt} is a variable measuring the state of technology of the firms operating in that sector of country j which produces the (internationally) nontradable good Y_{jNt}. It is assumed that A_{jNt} is a positive function of the capital installed in the sector of j which produces Y_{jNt}: $A_{jNt} = K_{jNt}^{\gamma_j}$. 10 This assumption combines the idea that learning-by-doing works through each firm’s capital investment and the idea that knowledge and productivity gains spill over instantly across all firms (see Barro and Sala-i-Martin, 1995). Therefore, in accordance with Frankel (1962), it is supposed that although A_{jNt} is endogenous to the economy, each firm takes it as given, since a single firm’s decisions have only a negligible impact on the aggregate stock of capital of the nontradable sector. 11

In each t, the net profit (cash flow) π_{jNt} of the representative firm producing nontradables is given by:

$$\pi_{jNt} = P_{jNt} Y_{jNt} - W_{jt} L_{jNt} - P_{jTt} I_{jNt}, I_{jNt} \geq 0,$$

(2)

9 Typically, consumer services are consumed while they are produced.

10 Consistently with this formal set-up, one can interpret technological progress as labour augmenting.

11 This amounts to say that technological progress is endogenous to the economy, although it is an unintended by-product of firms’ capital investment rather than the result of purposive R&D efforts.
where \(P_j^{Nt} \) and \(P_j^{Tt} \) are, respectively, the price of the nontradable good and the price of the tradable good in country \(j \) at time \(t \), \(W_j \) is the nominal wage in country \(j \) at time \(t \), and \(I_j^{Nt} \) is capital investment by the representative firm producing nontradables in country \(j \) at time \(t \).

The capital stock installed in the nontradable sector evolves according to

\[
K_{jNt+1} = I_{jNt} + (1 - \delta_j) K_{jNt}, \quad 0 \leq \delta_j \leq 1, \quad K_{jN0} \text{ given.} \hspace{1cm} (3)
\]

Firms decide on \(L_{jN0}, L_{jN1}, I_{jN0} \) and \(I_{jN1} \) subject to (3) in order to maximize their discounted sequence of net profits

\[
\pi_{jN0} + \frac{\pi_{jN1}}{(1 + i_j)}, \hspace{1cm} (4)
\]

where \(i_j \) is the nominal interest rate in country \(j \) at time \(t \).

Firms producing the (internationally) tradable good

In each country \(j \), there is a large number (normalized to be one) of identical firms producing the (internationally) tradable good \(Y_j^{Tt} \). In each period \(t \), these firms produce \(Y_j^{Tt} \) according to the following technology:

\[
Y_j^{Tt} = A_j^{Tt} K_j^{Tt-1} L_j^{Tt-\alpha_j}, \quad 0 < \alpha_j < \gamma_j, \hspace{1cm} (5)
\]

where \(K_j^{Tt} \) and \(L_j^{Tt} \) are, respectively, the capital stock and the labour input used in country \(j \) to produce the (internationally) tradable market good \(Y_j^{Tt} \). Notice that it is assumed that the labor elasticity of output is larger in the sector producing nontradables than in the sector producing tradables. Finally, \(A_j^{Tt} \) is a variable measuring the state of technology of the firms operating in that sector of country \(j \) which produces the (internationally) tradable good \(Y_j^{Tt} \). Finally, \(A_j^{Tt} \) is a positive function of the capital installed in the sector of \(j \) which produces \(Y_j^{Tt} \): \(A_j^{Tt} = K_j^{Tt-\alpha_j} \).

In each \(t \), the net profit \(\pi_{jTt} \) of the representative firm producing tradables is given by

\[
\pi_{jTt} = P_j^{Tt} Y_j^{Tt} - W_j L_j^{Tt} - P_j^{Tt} I_j^{Tt}, \quad I_j^{Tt} \geq 0, \hspace{1cm} (6)
\]

where \(I_j^{Tt} \) is capital investment by the representative firm producing tradables in country \(j \) at time \(t \).
The capital stock installed in the tradable sector evolves according to

\[K_{jT_{t+1}} = I_{jT_t} + (1 - \delta_j)K_{jT_t}, \quad 0 \leq \delta_j \leq 1, \quad K_{jT_0} \text{ given.} \] \hspace{1cm} (7)

Firms decide on \(L_{jT_0}, L_{jT_1}, I_{jT_0} \) and \(I_{jT_1} \) subject to (7) in order to maximize their discounted sequence of net profits

\[\pi_{jT_0} + \frac{\pi_{jT_1}}{(1 + i_1)}. \] \hspace{1cm} (8)

Households

Households live for two periods. Their large number living in country \(j \) is normalized to be one (population’s size is constant).

Consumption and real money balances providing liquidity services enter the period utility function of the representative household of country \(j \), \(u_{j_t} \):

\[u_{j_t} = \ln(C_{j_t}) + \chi_j \ln \left(\frac{M_{j_t}}{P_{j_t}} \right), \quad \chi_j > 0, \] \hspace{1cm} (9)

where \(M_{j_t} \) and \(P_{j_t} \) are, respectively, the household’s nominal money holdings and the consumer price index in country \(j \) at time \(t \), and \(C_{j_t} \) is the consumption index for the households located in country \(j \) at time \(t \). The consumption index is defined as

\[C_{j_t} = C_{j_{N_t}}^{\eta_{j}} C_{j_{T_t}}^{1-\eta_{j}}, \quad 0 < \eta_{j} < 1, \] \hspace{1cm} (10)

where \(C_{j_{N_t}} \) and \(C_{j_{T_t}} \) are, respectively, the consumption of nontradables and the consumption of tradables by the representative household located in country \(j \) at time \(t \). Notice that \(C_{j_t} \) can be interpreted as a composite good. Given (10), \(P_{j_{N_t}} \) and \(P_{j_{T_t}} \), the consumer price index \(P_{j_t} \) is obtained by minimizing the expenditure necessary to buy one unit of \(C_{j_t} \):

\[P_{j_t} = \frac{P_{j_{N_t}}^{\eta_{j}} P_{j_{T_t}}^{1-\eta_{j}}}{D_j}, \quad D_j = \eta_{j}^{\eta_{j}} (1 - \eta_{j})^{1-\eta_{j}}. \] \hspace{1cm} (11)
The amount of labour supplied by the representative household of country j in period t, L^s_{jt}, is determined as follows:

$$L^s_{jt} = \begin{cases} H_j & \text{if } \frac{W_{jt}}{P_{jt}} \geq V_{jt} \\ 0 & \text{otherwise}, \end{cases} \quad (12)$$

where H_j is the fixed time endowment of each household located in country j, and V_{jt} is the reservation wage for households located in j at time t. One could argue that this reservation wage is exogenously given and depends on labour productivity in non-market activities, which in the case of China may be interpreted as those activities typical of the traditional sector where low-productive technologies are utilized for subsistence consumption\(^\text{12}\) (largely coincident with China’s primary sector).

Besides determining L^{s0}_{j0} and L^{s1}_{j1} according to (12), the representative household decides on M_{j0}, C^{N0}_{j0}, C^{T0}_{j0}, B_{jH1}, M_{j1}, C^{N1}_{j1}, C^{T1}_{j1} and B_{jH2} in order to maximize its sequence of discounted utilities

$$u_{j0} + \theta_j u_{j1}, \quad 0 < \theta_j < 1, \quad (13)$$

satisfying the period budget constraints:

$$B_{jHt+1} + M_{jt} + P_{jTt} C^{Tt}_{jt} \leq \left(1 + i_{jt}\right) B_{jHt} + M_{jt-1} + P_{jTt-1} C^{Tt-1}_{jt-1} + L_{jt} W_{jt} - T_{jt}, \quad t = 0, 1, \quad (14)$$

B_{jH0}, i_{j0}, M_{j-1} given, and the condition:

$$B_{jHt+1} \geq \begin{cases} \min(-B_{usGt+1} - R_{cht+1}, 0) & \text{if } j = us, \\ \min(-B_{chGt+1}, 0) & \text{if } j = ch, \quad t = 0, 1. \end{cases} \quad (15)$$

In (13)-(14), θ_j represents the subjective discount factor of country j’s households, B_{jHt} are the domestic financial assets accumulated during period t-1 by the representative household of country j and carried over into period t with nominal yield i_{jt}, L_{jt} are the units of labour worked by the representative household of country j in period t, T_{jt} are the net monetary transfers (“net taxes”)

\(^{12}\) The net utility that the representative household gets by undertaking the non-market activities is assumed to be zero.
from the representative household of country j to its government in t. In (15), \(B_{jtGt} \) are the domestic financial assets accumulated during period t-1 by the j-country’s government sector and carried over into period t with nominal yield \(i_{jt} \), and \(R_{cht} \) are the Chinese foreign reserves, that is the US financial assets (denominated in US currency) accumulated during period t-1 by the Chinese government sector and carried over into period t with nominal yield \(i_{ust} \). The condition (15) imposes a limit to the possibility of the private sector to go into debt. In particular, it implies that the US private sector may go into debt in period t (\(B_{usHt+1} < 0 \)) only if in that period the Chinese accumulation of foreign assets exceeds the debt issued by the US public sector, i.e., if \(-B_{usGt+1} - R_{cht+1} < 0\), while the Chinese private sector may go into debt in t (\(B_{chHt+1} < 0 \)) only if in that period the Chinese public sector is willing to be a net holder of domestic financial assets, i.e., if \(-B_{chGt+1} < 0\). This asymmetry in the possibility of the private sectors of the two countries to go into debt is due to the fact that the Chinese capital account is not liberalized: the only international transactions in financial assets that can take place are those operated by the Chinese authorities. Furthermore, notice that in each period the representative household of country j is entitled to receive the net profits earned by the firms located in its own country as dividend payments. It should be also apparent that nominal balances (no-interest bearing financial assets) \(M_{jt} \) are accumulated during period t and carried over into period t+1 because of the liquidity services that they provide to the households.

Government sector

At time 0, both governments implement their policies for the current period and announce their policies for period 1. The governments of the two countries have different policy objectives. In particular, the US authorities decide on \(M_{us0}, T_{us0}, B_{usG1}, M_{us1}, T_{us1} \) and \(B_{usG2} \) in order to maximize the US households’ discounted sequence of consumption

\[
C_{us0} + \theta_{us} C_{us1},
\]

satisfying the period budget constraints:
\[
B_{usGt+1} \leq M_{ust-1} - M_{ust} + T_{ust} + (1 + i_{ust})B_{usGt}, \quad t=0,1, \tag{17}
\]

\[
B_{usG0}, i_{ust0}, M_{us-1} \text{ given, and—in accordance with (15)—the condition:}
\[
B_{usGt+1} \geq \min(-B_{usHt+1} - R_{cht+1}, 0), \quad t=0,1. \tag{18}
\]

Moreover, the Chinese authorities decide on \(E_{ch0}, M_{ch0}, T_{ch0}, B_{chG1}, R_{ch1}, E_{ch1}, M_{ch1}, T_{ch1}, B_{chG2}\) and \(R_{ch2}\) in order to maximize China’s discounted sequence of real GDP

\[
\frac{GDP_{ch0}}{P_{ch0}} + \theta_{ch} \frac{GDP_{ch1}}{P_{ch1}}, \tag{19}
\]

satisfying \(C_{ch0} \geq C_{cht}, C_{ch1} \geq C_{cht} \) (\(C_{cht}\) is the minimum level of consumption that the Chinese authorities desire to guarantee to their citizens in period \(t\)), the period budget constraints:

\[
B_{chGt+1} + E_{cht}R_{cht+1} \leq M_{cht} - M_{cht-1} + T_{cht} + (1 + i_{cht})B_{chGt} + E_{cht}(1 + i_{ust})R_{cht}, \quad t=0,1, \tag{20}
\]

\[
B_{chG0}, R_{ch0}, i_{ch0}, i_{us0}, M_{ch-1} \text{ given, and—in accordance with (15)—the conditions:}
\[
B_{chGt+1} \geq \min(-B_{chHt+1}, 0), \quad t=0,1, \tag{21}
\]

\[
R_{cht+1} \geq 0, \quad t=0,1. \tag{22}
\]

In (19)-(20), \(GDP_{jt} \equiv P_{jNt}Y_{jNt} + P_{jTt}Y_{jTt}\) is the nominal GDP of country \(j\) at time \(t\), \(E_{jt}\) \((E_{jt}=1/E_{it}, i \neq j)\) is the nominal exchange rate of country \(j\) at time \(t\) (the price in units of the \(j\)-country’s currency of one unit of the \(i\)-country currency at time \(t\)). It should be recalled that the only international transactions in financial assets that can take place are those operated by the Chinese authorities, which can fix \(E_{cht}\) and adjust consistently their foreign asset holdings.

Markets equilibrium conditions

Markets for labour and for the nontradable good are purely domestic. In equilibrium, the labour market of country \(j\) is characterized or by \(\frac{W_{jt}}{P_{jt}} > V_{jt}\) entailing \(L_{jt} = L_{jNt} + L_{jTt} = H_{j}^i\) or by

\[\text{Notice in (19) that the nominal GDP is deflated by the consumer price index.}\]
\[L_{jt} = L_{jNt} + L_{jTt} < H_j \] entailing \(\frac{W_{jt}}{P_{jt}} = V_{jt} \). Equilibrium in the country \(j \)'s market for the nontradable good requires:

\[Y_{jNt} = C_{jNt}. \] \(\text{(23)} \)

The market for the tradable good is internationally integrated. Equilibrium in this market requires:

\[Y_{usTt} + Y_{chTt} = C_{usTt} + C_{chTt} + I_{usNt} + I_{usTt} + I_{chNt} + I_{chTt}. \] \(\text{(24)} \)

In this internationally integrated market, the one-price law must hold:

\[P_{jTt} = E_{jt} P_{iTt}, \quad i \neq j, \] \(\text{(25)} \)

Money market equilibrium in country \(j \) requires that in each \(t \) money supply is equal to money demand:

\[M_{jt}^s = M_{jt}^d. \] \(\text{(26)} \)

Equilibrium in the markets for financial assets requires

\[B_{usHt} + B_{usGt} + R_{cht} = 0 \] \(\text{(27)} \)

and

\[B_{chHt} + B_{chGt} = 0. \] \(\text{(28)} \)

Notice that the Chinese stock of foreign reserves is the counterpart of the US negative net foreign asset position, and that the Chinese net holdings of domestic assets are equal to zero.\(^{14}\)

3. THE EQUILIBRIUM

The equilibrium solutions that we consider must satisfy:

\(^{14}\) Typically, the People’s Bank of China seeks to compensate the accumulation of foreign reserves by selling sterilisation bills to domestic agents, so as to keep control over money supply. As a result of this kind of operations, it is normally the case that the government sector reduces its holdings of domestic assets, while private agents increase theirs. However, for our purposes, it is not necessary to model the specific modalities whereby the Chinese central bank controls the supply of money while accumulating foreign reserves. What is essential for us is that an increase in the government sector’s holdings of foreign assets has its counterpart in an improvement of the country’s trade account.
(i) Agents’ rationality. In particular, they presume that both governments choose their policies by taking into account the private agents’ decision rules, which in their turn incorporate the governments’ policy rules (the solutions to the private agents’ optimization problems can be found in the Appendix).

(ii) Time consistency. This is relevant since in this context there is no mechanism allowing governments to make credible pre-commitments. Hence, announcements of policies that are not time-consistent cannot be credible, and policy rules that are not self-enforcing cannot be equilibrium solutions to the agents’ problem.

Furthermore, these equilibrium solutions are such that:

(iii) They do not account for the possibility of formal defaults. The fact that breaches of debt contracts are ruled out is an acceptable simplification, since in this context a) it is the consolidated (private+government sector) balance sheet of each national economy that matters, making immaterial how the holding of domestic asset \((B_{jHt} + B_{jGt})\) is divided up between private and government sector (hence, there is ample room for government policies that—by increasing the public debt—allow the households to reduce their liabilities and to be solvent, with no real effect on both economies), and b) the indebted country (the US) may always exploit the privilege of having its external debt denominated in its own currency by inflating it away, thus making unnecessary and unrealistic the option of a formal default.

(iv) They assume that in each period the US government acts as a Stackelberg leader vis-à-vis the Chinese government. In particular, this assumption intends to capture the realistic situation where the US authorities decide on their monetary policy by anticipating the optimal Chinese reaction to it in terms of nominal exchange-rate policy, money supply and accumulation of foreign reserves.

Period 1

To obtain time-consistent solutions, we solve the authorities’ problems by backward induction, thus starting from period 1. As preliminary steps for solving these problems, we focus on some relations holding in equilibrium among variables belonging to each national economy.
First, one can verify (see the Appendix) that
\[L_{jNt} = l(L_{jTr}, K_{jTr}, K_{jNt}), \quad l_{jNt} < 0. \tag{29} \]
Equation (29) reflects the fact that in equilibrium a higher employment level in the tradable sector is accompanied by a fall in the relative price of the nontradables that leads to a lower level of employment in the nontradable sector.

Second, moving economy \(j \) away from the production of nontradables and towards the production of tradables is also associated in period 1 with an improvement of its trade account. Hence, one can check (see the Appendix) that
\[\frac{TA_{j1}}{P_{jT1}} = f(L_{jT1}, K_{jT1}, K_{jN1}), \quad f_{l_{jN1}} > 0, \tag{30} \]
where \(TA_{j1} = P_{jT1}(Y_{jTr} - C_{jTr} - I_{jNt} - I_{jTr}) \) is the trade account of country \(j \) (denominated in \(j \) currency) at time \(t \). The adjustment required in period 1 to have an equilibrium where country \(j \) produces less nontradables and more tradables implies that this country reduces its absorption.

Third, it is not surprising that in general a re-balancing leading country \(j \) to produce less nontradables and more tradables brings about a compression of current consumption. Indeed (see the Appendix):
\[C_{jt} = c(L_{jT1}, K_{jTr}, K_{jNt}), \quad c_{l_{jNt}} < 0. \tag{31} \]
An implication of (31) is that there exists an upper limit \(L_{chTr} = a(C_{cht}, K_{cht}, K_{chNt}), \quad a_{c_{cht}} < 0, \) to the units of labour that according to the Chinese authorities it is desirable to allocate for the production of tradables. Notice that this upper limit is a negative function of the minimum level of consumption that the Chinese authorities desire to guarantee to their citizens.

Fourth, real GDP and the employment level in the tradable sector are linked by an U-shaped relationship (see the Appendix and Figure 2):
\[\frac{GDP_{jt}}{P_{jt}} = v(L_{jTr}, K_{jTr}, K_{jNt}), \quad v_{l_{jTr}} \begin{cases} < 0 \text{ if } L_{jTr} < \hat{L}_{jTr} \\ > 0 \text{ if } L_{jTr} > \hat{L}_{jTr}, 0 < \hat{L}_{jTr} < H_j \end{cases} \tag{32} \]
where \tilde{L}_{jT1} is that level of L_{jT1} at which country’s j real GDP reaches its minimum. Equation (32) captures the fact that—given the stocks of capital installed in the two sectors—a country’s real GDP is larger if labour is heavily concentrated either in the production of nontradables or in the production of nontradables. This is because an equilibrium where the national economy is highly specialized in the production of nontradables (tradables) is possible—in the presence of technologies characterized by decreasing marginal productivity of labour—only if the relative price of the nontradable (tradable) good is extremely high. In other words, the quantity produced by the nontradable (tradable) sector is very large whenever the relative price of the nontradables (tradables) is very high, thus explaining why real GDP tends to be higher when labour is unevenly distributed across the two sectors than when it is evenly allocated in the production of the two goods.

We can now highlight some relations holding in equilibrium among variables belonging to the different countries.

We start by using (30) to rewrite (24), i.e., the condition for equilibrium in the world market for the tradable good, as

$$\frac{TA_{ch1}}{P_{chT1}} + \frac{TA_{us1}}{P_{usT1}} = f(L_{chT1}, K_{chT1}, K_{chN1}) + f(L_{usT1}, K_{usT1}, K_{usN1}) = 0,$$

which one can apply the implicit function theorem so as to obtain:

$$L_{jT1} = n(L_{iT1}, K_{iT1}, K_{iN1}, K_{jT1}, K_{jN1}), \quad n_{L_{ji}} < 0, \ j \neq i. \quad (33)$$

Equation (33) establishes that, for keeping in equilibrium the world market for the tradable good, an increase in the employment level of country i’s tradable sector must be offset by a decrease in the employment level of country j’s tradable sector.

Secondly, we can use the equilibrium relationship between the price of the tradable good and the quantity of money $P_{jT1} = M_{j1}g(L_{jT1}, K_{jT1}, K_{jN1}), \ g_{L_{ji}} > 0$ (see the Appendix) to rewrite the
one-price law (25) as
\[g(L_{chT1}, K_{chT1}, K_{chN1}) - Q_1 g(L_{usT1}, K_{usT1}, K_{usN1}) = 0, \]
\[Q_1 = \frac{E_{ch1} M_{us1}}{M_{ch1}}, \]
to which again one can apply the implicit function theorem so as to obtain:
\[L_{usT1} = h(Q_1, L_{chT1}, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), h_{Q_1} < 0, h_{L_{usT1}} > 0. \] (34)

Equation (34) shows the channel whereby the Chinese authorities can influence how much tradable good is produced in the world economy and in which country is localized its production: given the US monetary policy, i.e., given \(M_{us1} \), they can manoeuvre \(Q_1 \) in order to control their real exchange rate and affect employment and output in both countries.\(^{15}\)

The possibility for the Chinese authorities to manoeuvre \(Q_1 \) for influencing employment and output in their country is more apparent by using (34) to rewrite the condition (24) for equilibrium in the world market for the tradable good as
\[f(L_{chT1}, K_{chT1}, K_{chN1}) + f(h(Q_1, L_{chT1}, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{usT1}, K_{usN1}) = 0, \]
to which once again one can apply the implicit function theorem so as to obtain:
\[L_{chT1} = y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), y_{Q_1} > 0. \] (35)

Equation (35) can be used for rewriting (33) as
\[L_{usT1} = n(y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), n_{L_{usT1}, y_{Q_1}} < 0. \] (36)

One can easily conclude from equations (35) and (36) that in period 1 the Chinese authorities can increase (depress) employment and production in the Chinese (US) tradable sector by setting a higher \(Q_1 \), namely by depreciating their real exchange rate. However, one can see from (31), (35) and (36) that by doing so they depress (increase) the consumption of the Chinese (US) households. Hence, the Chinese authorities are not willing to depreciate their real exchange rate beyond a certain limit because otherwise they would compress the consumption of the Chinese households below an acceptable threshold: there exists an upper bound \(\bar{Q}_1 \) above which the Chinese authorities do not

\(^{15}\) The possibility by the Chinese authorities to exert a perfect control on the real exchange rate rests on their ability to fully sterilise any purchase of US assets.
intend to set Q_1, where $\bar{Q}_1 = m(C_{ch1}, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1})$, $m_{C_{ch1}} < 0$, is that value of Q_1 satisfying $\bar{L}_{chT1} = a(C_{ch1}, K_{chT1}, K_{chN1}) = y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1})$, and C_{ch1} is assumed to be such that $\bar{L}_{chT1} > \bar{L}_{chT1}$. Notice that the level of \bar{Q}_1 depends negatively on C_{ch1}: if the minimum standard of living that the Chinese authorities desire to guarantee to their citizens is higher, the limit beyond which they do not want to depreciate China’s real exchange rate is more stringent.

It is straightforward that the accumulation of China’s foreign reserves has to accommodate the real-exchange rate policy pursued by the Chinese authorities. This can be seen by noticing that China’s foreign reserves evolve according to $R_{cht} = i_{ust} R_{cht} - TA_{ust}$, from which—by dividing both sides by P_{usTt}—we obtain:

$$\frac{(1 + i_{ust}) R_{cht} - R_{cht+1}}{P_{usTt}} = f(L_{usTt}, K_{usTt}, K_{usNt})$$ \hspace{1cm} (37)

By using (36) and the fact that $P_{usTt} = M_{us} g(L_{usTt}, K_{usTt}, K_{usN1})$, $g_{L_{usTt}} > 0$ (see the Appendix), one can rewrite (37) as

$$\frac{(1 + i_{us1}) R_{cht} - R_{cht2}}{M_{us} g(n(y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{usT1}, K_{usN1})} = f(n(y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{usT1}, K_{usN1})$$ \hspace{1cm} (38)

In (38), a higher Q_1 has to be accommodated by an increase in R_{cht2}. In contrast, an appreciation of the Chinese real exchange rate (a lower Q_1) worsens China’s trade account: in principle, the Chinese authorities may appreciate their real exchange rate up to the point where $R_{cht2} = 0$, namely up to the point where their trade account deficit can be fully financed by the credits accumulated in the past vis-à-vis the US. Therefore, the level of Q_1 satisfying (38) when $R_{cht2} = 0$, say $Q_{1, l}$, is the minimum at which the Chinese authorities can push Q_1 without becoming indebted to the US:

$$Q_{1, l} = q(M_{us1}, (1 + i_{us1}) R_{cht1}, K_{usT1}, K_{usN1}, K_{usT1}, K_{usN1}), q_{M_{us1}} > 0, q_{(1 + i_{us1}) R_{cht1}} < 0.$$ \hspace{1cm} (39)
The lower bound given by (39) represents the minimum at which the Chinese authorities can set Q_1, since it is not in the interest of the US to lend to China so as to allow it to finance the trade deficit associated with $Q_1 < Q_1$. Indeed, the consumption of the US representative household is such that

$$c(n(\gamma(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}) >$$

$$c(n(\gamma(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1})$$

(40)

for any Q_1' and Q_1 such that $Q_1' > Q_1$ (see Figure 2). The bound Q_1 is associated with a lower limit $L_{chT1} = y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1})$ to the units of labour that the Chinese authorities can allocate for the production of tradables.

![Figure 2. The relationship in period 1 between US consumption and employment in the Chinese tradable sector.](image)

We are now ready to characterize the decision rule of the Chinese authorities in period 1. Indeed, considering the U-shaped relationship between real GDP and L_{chT1} given by (32), it is optimal for the Chinese authorities to set (see Figures 3 and 4):

$$Q_1 = \begin{cases}
Q_1 & \text{if } v(y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{chT1}, K_{chN1}) > \\
Q_1 & \text{if } v(y(Q_1, K_{chT1}, K_{chN1}, K_{usT1}, K_{usN1}), K_{chT1}, K_{chN1}) > \\
\end{cases}$$

(41)

The rule (41) says that the Chinese authorities are going to depreciate their real exchange rate up to the point that guarantees the minimum acceptable level of consumption to the Chinese households.
(Q_1=\overline{Q}_1), thus giving an export-led characterization to their economy, if in this way they can reach a higher level of real GDP than the level reachable by appreciating their real exchange up to the point that they cease to accumulate US assets (Q_1=\overline{Q}_1), thus using the credits accumulated in the past to run a trade account deficit and to specialize China’s economy in the production of nontradables.

\[
\frac{\text{GDP}_{\text{ch}1}}{P_{\text{ch}1}} = v(L_{\text{chT1}}, K_{\text{chT1}}, K_{\text{chN1}})
\]

Figure 3. The decision rule of the Chinese authorities in period 1 (case in which \(M_{\text{us1}} > M_{\text{us1}} \))

\[
\frac{\text{GDP}_{\text{ch}1}}{P_{\text{ch}1}} = v(L_{\text{chT1}}, K_{\text{chT1}}, K_{\text{chN1}})
\]

0 \quad L_{\text{chT1}} \quad \hat{L}_{\text{chT1}} \quad \bar{L}_{\text{chT1}} \quad H_{\text{ch}}

Figure 4. The decision rule of the Chinese authorities in period 1 (case in which \(M_{\text{us1}} < M_{\text{us1}} \))

The US authorities can influence the decision of the Chinese policy-makers. It is apparent, indeed, that it is in the interest of the US authorities to have \(Q_1 = \overline{Q}_1 \) (leading to \(L_{\text{chT1}} = \bar{L}_{\text{chT1}} \))
rather than \(Q_1 = \underline{Q}_1 \) (leading to \(L_{\text{ch}T1} = \underline{L}_{\text{ch}T1} \)), since \(\overline{Q}_1 > \underline{Q}_1 \) (see (40) and Figure 2). To influence the Chinese authorities’ decision, the US authorities can inflate the US external debt by increasing \(M_{\text{us}1} \), thus augmenting \(\underline{Q}_1 \) (see (39)) and \(L_{\text{ch}T1} \) (see (35)): by reducing the real value of their outstanding debt, the US authorities may lower the benefit that the Chinese authorities can achieve by ceasing to accumulate US assets and running a trade account deficit financed with the credits accumulated in the past. In this way, the US authorities can make more convenient for their Chinese counterparts to set \(Q_1 = \overline{Q}_1 \), namely to continue in period 1 to accumulate US assets and to specialize their economy in the production of tradables. More precisely, it is optimal for the US authorities to set \(M_{\text{us}1} > M_{\text{us}1}^{\text{us}} \), where \(M_{\text{us}1}^{\text{us}} \) is that value of \(M_{\text{us}1} \) satisfying

\[
\nu(y(Q_1, K_{\text{ch}T1}, K_{\text{ch}N1}, K_{\text{us}T1}, K_{\text{us}N1}), K_{\text{ch}T1}, K_{\text{ch}N1}) = \\
\nu(y(\overline{Q}_1, K_{\text{ch}T1}, K_{\text{ch}N1}, K_{\text{us}T1}, K_{\text{us}N1}), K_{\text{ch}T1}, K_{\text{ch}N1}) \quad \text{and} \quad Q_1 \quad \text{is}
\]
given by (39). It is also worth to stress that \(\frac{\partial M_{\text{us}1}}{\partial (1 + i_{\text{us}1}) R_{\text{ch}1}} > 0 \): the larger are the credits that China accumulated in the past, the larger has to be \(M_{\text{us}1} \) in order to induce the Chinese authorities to go on lending to the US.

Another way to look at the situation described above is by emphasizing that there is a limit to the possibility for the Chinese authorities to preserve their real variables from variations due to changes in the US monetary policy, by undertaking offsetting movements in \(\frac{E_{\text{ch}1}}{P_{\text{ch}T1}} \) and \(R_{\text{ch}2} \) that keep \(Q_1 \) and \(\frac{(1 + i_{\text{us}1}) R_{\text{ch}1}}{P_{\text{us}T1}} - \frac{R_{\text{ch}2}}{P_{\text{us}T1}} \) unchanged. Once \(R_{\text{ch}2} = 0 \), any further increase in \(M_{\text{us}1} \) forces China to appreciate its real exchange rate, thus reducing the maximum trade deficit (in units of the tradable good) that it can run

\[
- f(L_{\text{ch}T1}, K_{\text{ch}T1}, K_{\text{ch}N1}) = \frac{(1 + i_{\text{us}1}) R_{\text{ch}1}}{P_{\text{us}T1}}.
\]

We may briefly summarize our discussion in the proposition below:
Proposition 1 The equilibrium emerging in the future (i.e., in period 1) is such that the US authorities will inflate the US external debt up to the point where the Chinese authorities have no convenience to stop accumulating US financial assets, and to use the credits accumulated in the past to increase China’s current consumption and move its production away from tradables and towards nontradables.

Proof: see the discussion above.

Period 0

To save space, in period 0 we solve the model only for the case that is more realistic, namely the case where parameter values and initial conditions are such that the emerging equilibrium is characterized in both countries by some persistent “unemployment”, i.e., by the fact that both in period 0 and in period 1 some labour is not employed in the market sectors because real wages cannot be pushed below the reservation wages of the workers to insure full employment.

Differently than in period 1, in period 0 the authorities of both countries must take into account the effects of their policies on the accumulation of physical capital. However, the logic underlying the policy makers’ behaviour in period 0 is similar to that dictating their choices in the final period. Indeed, China’s sequence of discounted real GDP and policy-relevant levels of L_{chT0} are linked by an U-shaped relationship (see the Appendix):

$$\frac{GDP_{ch0}}{P_{ch0}} + \theta_{ch} \frac{GDP_{ch1}}{P_{ch1}} = b(L_{chT0}, K_{chT0}, K_{chN0}), \quad b_{L_{ch}} \begin{cases} < 0 \text{ if } L_{chT0} < \tilde{L}_{chT0} \\ > 0 \text{ if } L_{chT0} > \tilde{L}_{chT0} \end{cases} , \quad 0 < \tilde{L}_{chT0} < H_{ch} , \quad (42)$$

where \tilde{L}_{chT0} is that level of L_{chT0} at which China’s sequence of discounted real GDP reaches its minimum. Moreover, by using $P_{jT0} = \frac{M_{j1}M_{j0}g(L_{jT0}, K_{jT0}, K_{jN0})}{(\theta_{j}M_{j0} + M_{j1})}$ (see the Appendix), one can rewrite the one-price law (25) as

$$g(L_{chT0}, K_{chT0}, K_{chN0}) - Q_0g(L_{usT0}, K_{usT0}, K_{usN0}) = 0 \quad ,$$

$Q_0 = \frac{E_{ch}M_{us}M_{ust}(\theta_{ch}M_{ch0} + M_{ch1})}{M_{ch0}M_{ch1}(\theta_{us}M_{ust} + M_{ust})}$, thus showing that the Chinese authorities can manoeuvre Q_0 in order to control their real exchange rate and affect employment and output in both countries.
Finally, one can check for relevant ranges of parameter values and initial conditions that given the equilibrium that will emerge in period 1: i) \(\frac{\partial TA_{ch0}}{\partial P_{chT0}} > 0 \), ii) \(\frac{\partial L_{usT0}}{\partial L_{chT0}} < 0 \), and iii) \(\frac{\partial C_{us0} + \theta_{us}C_{us1}}{\partial L_{usT0}} < 0 \). Therefore, also in period 0—as in period 1—there is a limit beyond which the Chinese authorities are not willing to depreciate their real exchange rate for not pushing \(L_{chT0} \) above \(\bar{L}_{chT0} \) and \(C_{ch0} \) below \(\underline{C}_{ch0} \), where \(\underline{C}_{ch0} \) is such that \(\bar{L}_{chT0} > \bar{L}_{chT0} \). Similarly, there exists a lower bound \(Q_0 \) below which the Chinese cannot set \(Q_0 \). Thus, also in period 0 the choice for the Chinese authorities is between two options, that is between setting \(Q_0 = \underline{Q}_0 \) or \(Q_0 = \bar{Q}_0 \), while for the US authorities it is convenient to manage \(M_{us0} \) so as to make less attractive for their Chinese counterparts the option of setting \(Q_0 = \underline{Q}_0 \), thus inducing them to set \(Q_0 = \bar{Q}_0 \) and accumulate US financial assets.

Employment implications

Let us suppose that there is an increase in the minimum standard of living that the Chinese authorities desire to guarantee to their citizens in the present (higher \(\underline{C}_{ch0} \)). This will lead to an appreciation of the Chinese real exchange rate (lower \(\bar{Q}_0 \)), and in equilibrium to a lower \(L_{chT0} \) and a higher \(L_{usT0} \). What are the immediate effects of this change on unemployment in the two countries? One can easily verify that

\[
\frac{\partial (L_{jT0} + L_{jN0})}{\partial L_{jT0}} \begin{cases}
> 0 \text{ if } L_{jT0} > \frac{(1 - \eta_j)(1 - \alpha_j)L_{jN0}}{\eta_j(1 - \gamma_j)} \\
< 0 \text{ if } L_{jT0} < \frac{(1 - \eta_j)(1 - \alpha_j)L_{jN0}}{\eta_j(1 - \gamma_j)}
\end{cases}
\]

(43)
where \(L_{jT0}^{N0} = \left[\gamma_j K_{jT0} \left(\frac{D_j}{V_j} \right)^{\frac{1}{\eta_j}} \left(\frac{\alpha_j K_{jT0}}{L_{jT0}} \right)^{\frac{1-\gamma_j}{\eta_j}} \right]^{\frac{1}{1-\gamma_j}} \) (see the Appendix). One can see from (43) that it is more likely that a higher \(L_{jT0} \) boosts total employment in a country whose employment level in the nontradable sector is relatively low with respect to \(L_{jT0} \) because its initial endowments of capital in the two sectors are relatively poor with respect to its workers’ reservation wage. Admitting that this is the situation of China, while the US is in the opposite situation having a larger share of their total employment in the nontradable sector, it is quite possible that the immediate effects of an appreciation of the Chinese real exchange rate on total employment are negative in both countries.

4. CONCLUSIONS

The accumulation of foreign reserves by the Chinese authorities has been part and parcel of the export-led growth strategy pursued to foster the expansion of the gross domestic product and the mobilization of the labour force from rural to more advanced activities. The US, in turn, has benefited from keeping consumption high through the accumulation of external deficits, to a large extent financed by China.

Our two-country two-period macroeconomic model captures the symbiotic relationship linking the US to China in recent years, reproduces some stylised aspects of the “Sino-American co-dependency”, and helps to rationalise the pros and cons of the accumulation of foreign reserves in China in the light of the policy objectives pursued by both the Chinese and the US authorities.\(^{16}\) Hence, this work contributes to the debate on global imbalances and on global rebalancing in that it originally focuses on the interdependence between the objectives and the policy strategies adopted in both countries, rather than treating them in isolation.

\(^{16}\)The model is stylised because, to keep it tractable and to provide more intuitive results, we neglect some aspects (avenues for future research) regarding the financial sectors in the US and in China, the behaviour of privately and publicly owned companies in China, and the differences between portfolio and FDI financial flows.
The model shows that, as long as the Chinese policy-makers attach more weight to increasing the economic size of their country than to boosting households’ consumption, they have an interest in steering the Chinese economy towards the production of either tradables or nontradables, depending on the US policy actions. In particular, the model suggests that as long as the US monetary policy is not so tight that the real value of the US external debt exceeds a certain threshold, the Chinese authorities have a convenience to keep financing the US external deficits rather than appreciating the currency and depleting the accumulated stocks of foreign reserves.

It is worth stressing that we do not associate either of the two periods in the model with a specific span of time: the reason is that the theoretical model is kept general enough to be suitable both for analyzing the Sino-America co-dependency through an historical perspective (starting with the adoption on a fixed exchange rate regime with the currency pegged to the US dollar in 1994 and ending at the time of writing) and for assessing the implications of plausible future scenarios that differ in terms of key economic policy choices.

As regard the implications of the model for the future of the US-China relationship, a qualification is in order. Considering that hardly anybody would encourage the US monetary authorities to tight the monetary policy to the point to generate deflation, it could be argued that the abovementioned finding entails that the current Sino-American arrangement is unlikely to change in the predictable future. It should be kept in mind that this conclusion is valid *ceteris paribus*. In fact, some aspects of the current arrangement may change. First, the perfect sterilisation of an increasingly amount of foreign reserves (key to make the monetary policies in the two countries independent) may turn out to be too a demanding task for the Chinese monetary authorities. Second, the Chinese leadership may review the overall objectives for the country, attaching a larger (lower) weight to household’s consumption (GDP growth) than in the past. (This possibility is indeed considered in the paper and we show that, under certain conditions, this occurrence may

17 China has maintained a high degree of domestic financial repression in order to facilitate the sterilisation of mounting foreign reserves and to drive the allocation of domestic investment across alternative uses. The distortions connected to these by-products of the sterilisation of the reserves might prove to be too high in the future.
negatively affect employment in both countries). Third, the growing riskiness associated with an increasing stock of US foreign debt (an issue that is admittedly not considered in the model) and the progressive decline of manufacturing sector in the US may lead to an overhaul of the US policy objectives in the medium and long term.

References

APPENDIX

1) Solutions to the private agents’ optimization problems

From the firms’ first-order conditions with respect to labour, one can derive the relative price of the nontradable good in terms of units of the tradable good:

\[
P_{j\text{Nt}}^{1,1} = \frac{\alpha_j K_{j\text{Tr}}^1 L_{j\text{Nt}}^{1-\gamma_j}}{\gamma_j K_{j\text{Nt}}^{1-\alpha_j}}, \quad t = 0, 1,
\]

(A1)

By considering the firms’ first-order conditions with respect to labour and the fact that the households’ labour supply is determined according to (12), one can derive the employment level in the nontradable sector and the nominal wage:

\[
\begin{cases}
H_j - L_{j\text{Tr}} \text{ if } \Phi_{j\text{Tr}} \left[K_{j\text{Nt}} \left(\frac{K_{j\text{Tr}}^{1-\alpha_j}}{L_{j\text{Tr}}^{1-\alpha_j}} \right)^{1-\eta_j} \right] \left(1 - \frac{1}{1-\gamma_j} \right) + L_{j\text{Tr}} > H_j \\
\Phi_{j\text{Nt}} \left[K_{j\text{Nt}} \left(\frac{K_{j\text{Nt}}^{1-\alpha_j}}{L_{j\text{Nt}}^{1-\alpha_j}} \right)^{1-\eta_j} \right] \left(1 - \frac{1}{1-\gamma_j} \right) \text{ otherwise, } t = 0, 1,
\end{cases}
\]

(A2)

\[
W_{jt} = \begin{cases}
\alpha_j P_{j\text{Tr}} K_{j\text{Tr}}^{1-\alpha_j} L_{j\text{Nt}}^{1-\gamma_j} \text{ if } \Phi_{jt} \left[K_{j\text{Nt}} \left(\frac{K_{j\text{Tr}}^{1-\alpha_j}}{L_{j\text{Tr}}^{1-\alpha_j}} \right)^{1-\eta_j} \right] \left(1 - \frac{1}{1-\gamma_j} \right) + L_{j\text{Tr}} > H_j \\
P_{j\text{Nt}} \left(\frac{\alpha_j K_{j\text{Tr}}^{1-\gamma_j}}{V_{jt}} \right) \text{ otherwise, } t = 0, 1,
\end{cases}
\]

(A3)

where \(\Phi_{jt} \equiv \left[\frac{\gamma_j}{\alpha_j} \left(\frac{\alpha_j D_j}{V_{jt}} \right) \right]^{1-\eta_j} \left(1 - \frac{1}{1-\gamma_j} \right) \), and where one can easily check that \(l_{j\text{Nt}} < 0 \). With reference to (A2), we consider parameter values and stocks of capital satisfying
such that

\[L_{jT1}^* + \Phi_{jt} \begin{bmatrix} K_{jNt} \\ K_{jT1} \\ \frac{1}{(L_{jT1}^*)^{1-\alpha_j}} \end{bmatrix} \begin{bmatrix} 1-\eta_j \\ \eta_j \\ 1-(1-\gamma_j) \end{bmatrix} < H_j, \quad (A4) \]

where

\[L_{jT1}^* = \left[\frac{(1-\alpha_j)(1-\eta_j)\Phi_{jt}}{\eta_j(1-\gamma_j)} \right] K_{jNt} K_{jT1}^{\eta_j} \left(\frac{1}{1-(1-\gamma_j)} \right)^{\eta_j/(1-\gamma_j)} \]

is that value of \(L_{jT1} < H_j \) which minimizes \(L_{jT1} + l(L_{jT1}, K_{jT1}, K_{jNt}) \). By considering that \(\frac{\partial^2 L_{jT1}}{\partial L_{jT1}^2} > 0 \) and that

\[L_{jT1} + \Phi_{jt} \begin{bmatrix} K_{jNt} \\ K_{jT1} \\ \frac{1}{(L_{jT1})^{1-\alpha_j}} \end{bmatrix} \]

\[\rightarrow \begin{bmatrix} H_j + \Phi_{jt} \\ K_{jNt} \left(\frac{K_{jT1}}{H_j^{1-\alpha_j}} \right) \end{bmatrix} \]

as \(L_{jT1} \rightarrow H_j \), one can conclude from \((A4) \) that there exists an unique pair \((L_{jT1}^*, L_{jT1}^+)\) satisfying \(0 < L_{jT1}^* < L_{jT1}^+ < H_j \) and

\[L_{jT1} + \Phi_{jt} \begin{bmatrix} K_{jNt} \\ K_{jT1} \\ \frac{1}{(L_{jT1})^{1-\alpha_j}} \end{bmatrix} = H_j = L_{jT1}^* + \Phi_{jt} \begin{bmatrix} K_{jNt} \\ K_{jT1} \\ \frac{1}{(L_{jT1})^{1-\alpha_j}} \end{bmatrix} \]. Notice that for any \(L_{jT1} \) such that \(L_{jT1} < L_{jT1} < L_{jT1}^+ \) one has unemployment in country \(j \) at time \(t \).

By maximizing the firms’ discounted sequence of profits with respect to the investment rate, one can obtain:

\[I_{usN1} = I_{usT1} = I_{chN1} = I_{chT1} = 0, \quad (A5) \]

\[P_{jT0} = \frac{(1-\alpha_j)P_{jT1}}{(1+i_{j1})}, \quad \alpha_j \]

\[P_{jT0} = \frac{(1-\gamma_j)P_{jN1}}{(1+i_{j1})}, \quad \gamma_j \]

Notice that for any
By considering (1) and (23), one can easily check that

\[C_{j0} = K_{j0} L_{j0}^{\gamma}, \quad t=0,1. \]

(A8)

By maximizing (13) subject to (14) with respect to \(C_{jTt} \) and \(C_{jNt} \), one can use (A1) and (A8) to obtain:

\[\frac{(1 - \eta_i) \alpha_j K_{jT0} L_{jN0} \gamma_j}{\eta_j \gamma_j^{1-\alpha_j}} = 1, \quad t=0,1. \]

(A9)

By maximizing (13) subject to (14) with respect to \(C_{j0} \) and \(M_{j0} \), one can use (A9) to obtain:

\[M_{j0} = \frac{C_{jT0} (1+i_{j1})}{(1 - \eta_j) i_{j1}} = \frac{C_{jT0} \gamma_j K_{jT0} L_{jN0} (1+i_{j1})}{\eta_j \gamma_j^{1-\alpha_j} i_{j1}}. \]

(A10)

By maximizing (13) subject to (14) with respect to \(C_{jT1} \) and \(M_{j1} \), one can use (A9) to obtain:

\[M_{j1} = \frac{C_{jT1} \gamma_j K_{jT1} L_{jN1}}{(1 - \eta_j)} = \frac{C_{jT1} \gamma_j^{1-\alpha_j}}{\eta_j}. \]

(A11)

By maximizing (13) subject to (14) with respect to \(M_{j0} \) and \(M_{j1} \), one can obtain:

\[i_{j1} = \frac{M_{j1}}{\theta_j M_{j0}}. \]

(A12)

Finally, by considering (13), (14) and (15), one can easily conclude that it is optimal for the representative household to set:

\[B_{jH2} = \begin{cases}
\min(-B_{usG2} - R_{chG2}, 0) & \text{if } j = \text{us}, \\
\min(-B_{chG2}, 0) & \text{if } j = \text{ch}.
\end{cases} \]

(A13)

2) Derivation of (30)

By using (5), (A2), (A5) and (A9), one can rewrite \(\frac{TA_{jT1}}{P_{jT1}} = Y_{jT1} - C_{jT1} - I_{jT1} - I_{jN1} \) as

\[\frac{TA_{jT1}}{P_{jT1}} = f(L_{jT1}, K_{jT1}, K_{jN1}) = L_{jT1}^{\alpha_j} \frac{(1 - \eta_j) \alpha_j K_{jT1} / (L_{jT1}, K_{jT1}, K_{jN1})}{\eta_j \gamma_j^{1-\alpha_j}}, \]

(A14)

where one can easily check that \(f_{L_{jT1}} > 0 \).

3) Derivation of (31)

By using (A2), (A8) and (A9), one can rewrite \(C_{jt} = C_{jNt}^{\eta_j} C_{jTt}^{1-\eta_j} \) as
\[C_{jt} = c(L_{jTt}, K_{jTt}, K_{jNt}) = \frac{K_{jNt}(1/(L_{jTt}, K_{jTt}, K_{jNt}))^{1-\eta_j}}{[\eta_j \gamma_j L_{jTt}^{1-\alpha_j}]}^{1-\eta_j} \], \hspace{1cm} (A15)

where one can check that \(c_{L_{jT}} < 0 \).

4) Derivation of (32)

By using (1), (5), (11), (A1) and (A2), one can verify that

\[
\frac{\text{GDP}_{jTt}}{P_{jTt}} = \frac{P_{jTt} Y_{jTt} + P_{jNt} Y_{jNt}}{P_{jt}} = \left(\frac{\gamma_j K_{jNt}^{\eta_j}}{\alpha_j} D_{jTt} K_{jNt}^{1-\eta_j} L_{jTt}^{1-\alpha_j} + \alpha_j \right) \left[1 + \frac{\alpha_j}{\gamma_j L_{jTt}^{1-\alpha_j}} \right]. \hspace{1cm} (A16)
\]

Considering (A2), (A16) can be rewritten as

\[
\frac{\text{GDP}_{jTt}}{P_{jTt}} = v(L_{jTt}, K_{jTt}, K_{jNt}),
\]

where

\[
v(L_{jTt}, K_{jTt}, K_{jNt}) = \begin{cases}
\frac{V_{jTt}}{\alpha_j} L_{jTt}^{1-\eta_j} K_{jNt}^{\eta_j} \left(\frac{K_{jTt}}{L_{jTt}^{1-\alpha_j}} \right)^{1-\eta_j} \left(\frac{1}{1-\gamma_j} \right)^{1-\gamma_j} & \text{if} \ L_{jTt} \leq L_{jTt} \leq L_{jTt}^+ \\
\frac{\gamma_j K_{jNt}^{\eta_j}}{\alpha_j} D_{jTt} K_{jNt}^{1-\eta_j} L_{jTt}^{1-\alpha_j} + \alpha_j \left(H_j - L_{jTt} \right) \left(1-\gamma_j \right)^{1-\gamma_j} \left(\frac{1}{\gamma_j L_{jTt}} \right)^{1-\gamma_j} & \text{otherwise}.
\end{cases}
\]

Notice that \(v(L_{jTt}, K_{jTt}, K_{jNt}) \) is continuous in \(L_{jTt} \in [0, H_j] \). Moreover, one can easily check that

\[
\frac{\partial^2 v_{jTt}}{\partial L_{jTt}^2} \left(\frac{V_{jTt}}{\alpha_j} L_{jTt}^{1-\eta_j} K_{jNt}^{\eta_j} \left(\frac{K_{jTt}}{L_{jTt}^{1-\alpha_j}} \right)^{1-\eta_j} \left(\frac{1}{1-\gamma_j} \right)^{1-\gamma_j} \right) > 0,
\]

and that there exists a unique value of \(L_{jTt} \in [0, H_j] \), say \(L_{jTt}^* \), such that

\[
\frac{\partial}{\partial L_{jTt}} \left(\frac{\gamma_j K_{jNt}^{\eta_j}}{\alpha_j} D_{jTt} K_{jNt}^{1-\eta_j} L_{jTt}^{1-\alpha_j} + \alpha_j \left(H_j - L_{jTt} \right) \left(1-\gamma_j \right)^{1-\gamma_j} \left(\frac{1}{\gamma_j L_{jTt}} \right)^{1-\gamma_j} \right) < 0 \text{ if } 0 \leq L_{jTt} < L_{jTt}^* \text{ and } 0 \text{ if } H_j \geq L_{jTt} > L_{jTt}^*.
\]

Thus, admitting parameter values and stocks of capital at time 1 such that \(L_{jTt}^* < L_{jTt}^* < L_{jTt}^+ \) and \(L_{jTt} < L_{jTt}^* < L_{jTt}^* \), where \(L_{jTt} \) is the unique value of \(L_{jTt} \) minimizing
\[
\left\{ \frac{L_{jT1}}{Y_j} + \frac{\alpha_j \Phi_{jT1}}{Y_j} \right\} \left[K_{jN1} \left(\frac{K_{jT1}}{L_{jT1}} \right)^{1-\eta_j} \frac{1}{(1-\gamma_j)} \right], \quad \text{one can conclude that} \quad \frac{\text{GDP}_j}{P_{jT1}} \quad \text{is decreasing in } L_{jT1} \quad \text{for} \quad L_{jT1} \leq \hat{L}_{jT1}.
\]

and increasing in \(L_{jT1} \) for \(L_{jT1} \geq \hat{L}_{jT1} \).

5) Derivation of the equilibrium relationship between the price of the tradable good and the quantity of money in period 0 and in period 1

One can use (A2) and (A12) to rewrite (A10) as
\[
P_{jT0} = \frac{M_j M_{j0} g(L_{jT0}, K_{jT0}, K_{jN0})}{(\theta_j M_{j0} + M_{j1})},
\]
where
\[
g(L_{jT0}, K_{jT0}, K_{jN0}) = \frac{\eta_j Y_j^{1-\alpha_j}}{\chi_j K_{jT0}^\alpha L_{jT0}^\gamma (L_{jT0}, K_{jT0}, K_{jN0})} \quad \text{and} \quad g_{L_{jT0}} > 0.
\]

Similarly, one can use (A2) to rewrite (A11) as
\[
P_{jT1} = M_j g(L_{jT1}, K_{jT1}, K_{jN1}),
\]
where
\[
g(L_{jT1}, K_{jT1}, K_{jN1}) = \frac{\eta_j Y_j^{1-\alpha_j}}{\chi_j K_{jT1}^\alpha L_{jT1}^\gamma (L_{jT1}, K_{jT1}, K_{jN1})} \quad \text{and} \quad g_{L_{jT1}} > 0.
\]

6) Derivation of (42)

Considering (A2) and (A15), one can check that, if at time 1 the equilibrium emerging in China is characterized by the presence of unemployment, one has:
\[
L_{chT1} = \bar{L}_{chT1} = \Theta_1 K_{chT1} = \frac{1}{(1-\alpha_{ch1})(1-\alpha_{ch0})(1-\eta_{ch})} \quad \Theta_1 \equiv \frac{\phi^{1-\eta_{ch1} (1-\gamma_{ch0})} \{\alpha_{ch1} (1-\eta_{ch}) \}}{\gamma_{ch} l \eta_{ch} \eta_{ch} (1-\eta_{ch})}, \quad (A17)
\]
where \(L_{chT1} < \bar{L}_{chT1} < L_{chT1}^+ \). Thus, one can use (A2), (A16) and (A17) to write
\[
\frac{\text{GDP}_{ch0}}{P_{ch0}} + \theta_{ch} \frac{\text{GDP}_{ch1}}{P_{ch1}} = \frac{P_{ch0} Y_{chT0} + P_{ch0} Y_{chN0}}{P_{ch1}} + \theta_{ch} \left(\frac{P_{ch1} Y_{chT1} + P_{ch1} Y_{chN1}}{P_{ch1}} \right)
\]
\[
= \left(\frac{\gamma_{ch} K_{chN0}}{\alpha_{ch}} \right)^{\eta_{ch}} \frac{D_{ch} K_{chT0}^{1-\eta_{ch}} (1-\alpha_{ch}) \eta_{ch} + \alpha_{ch}}{[L(L_{chT0}, K_{chT0}, K_{chN0})]^{1-\gamma_{ch} \eta_{ch}}} \left[1 + \frac{\alpha_{ch}(L_{chT0}, K_{chT0}, K_{chN0})}{\gamma_{ch} L_{chT0}} \right] + \theta_{ch} \frac{Y_{ch1}}{\alpha_{ch}} \left(\frac{1}{\Theta_1} \right)^{\frac{1}{(1-\alpha_{ch}) (1-\eta_{ch})}} + \alpha_{ch} \frac{\Phi_{ch1}}{\gamma_{ch}} \left(\frac{1}{\Theta_1} \right)^{\frac{1}{(1-\alpha_{ch}) (1-\eta_{ch})}}. \quad (A18)
\]
The stocks of capital in period 1 depend on the investment decisions made in 0. Assuming that in country \(j \) there is unemployment in period 1, and taking into account of \(P_{jT0} = \frac{M_{j1}M_{j0}g(L_{jT0}, K_{jT0}, K_{jN0})}{(\theta_{j} M_{j0} + M_{j1})} \), \(P_{jT1} = M_{j1}g(L_{jT1}, K_{jT1}, K_{jN1}) \), (A1), (A2), (A3) and (A12), one can rewrite the first-order conditions with respect to the investment rate in the two sectors (equations (A6) and (A7)) as, respectively,

\[
\begin{aligned}
&\left(K_{jT1}^{1-\gamma \eta_{j}} \right)^{(1-\gamma \eta_{j})} \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT0}^{1-\alpha_{j}} \theta_{j} K_{jT0} l(L_{jT0}, K_{jT0}, K_{jN0}) = (1 - \alpha_{j}) L_{jT1}^{1-\gamma \eta_{j}}, \\
&\left(L_{jT1}^{1-\alpha_{j}} \right)^{(1-\gamma \eta_{j})} \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT0}^{1-\alpha_{j}} \theta_{j} K_{jT0} l(L_{jT0}, K_{jT0}, K_{jN0}) = \left(\gamma_{j} \right)^{(1-\gamma \eta_{j})} \left(\frac{\alpha_{j} \phi_{j1}^{1-\gamma \eta_{j}}}{\gamma_{j}} \right) \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT1}^{1-\gamma \eta_{j}}.
\end{aligned}
\]

(A19)

and

\[
\begin{aligned}
&\left(K_{jT1}^{1-\gamma \eta_{j}} \right)^{(1-\gamma \eta_{j})} \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT0}^{1-\alpha_{j}} \theta_{j} K_{jT0} l(L_{jT0}, K_{jT0}, K_{jN0}) = (1 - \gamma_{j}) \phi_{j1} L_{jT1}^{1-\gamma \eta_{j}} \frac{1}{\gamma_{j}} \left(\frac{\alpha_{j} \phi_{j1}^{1-\gamma \eta_{j}}}{\gamma_{j}} \right) \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT1}^{1-\gamma \eta_{j}}.
\end{aligned}
\]

(A20)

Equation (A20) can be rearranged as

\[
K_{jN1} = \frac{\Psi_{j} l(L_{jT0}, K_{jT0}, K_{jN0}) K_{jT0}}{L_{jT0}^{1-\alpha_{j}}}, \quad \Psi_{j} = \left(1 - \gamma_{j} \right) \theta_{j} \left(\frac{\gamma_{j} D_{j} K_{jN1}}{V_{j1}} \right)^{(1-\gamma \eta_{j})} \phi_{j1} \left(\frac{1}{(1-\gamma \eta_{j})} \phi_{j1} \right) \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT1}^{1-\gamma \eta_{j}}.
\]

(A21)

By using (A21), one can rewrite (A19) as

\[
K_{jT1} = \Xi_{j} \left(\frac{L_{jT0}^{1-\alpha_{j}}}{l(L_{jT0}, K_{jT0}, K_{jN0}) K_{jT0}} \right)^{\gamma_{j} \eta_{i} \gamma_{j}^{(1-\gamma \eta_{j})}} \left(\frac{(1-\gamma \eta_{j}) \phi_{j1}^{1-\gamma \eta_{j}}}{\gamma_{j} \phi_{j1} L_{jT1}^{1-\gamma \eta_{j}} \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT1}^{1-\gamma \eta_{j}}} \right)^{(1-\gamma \eta_{j})} \theta_{j} \left(\frac{\gamma_{j} D_{j} K_{jN1}}{V_{j1}} \right)^{(1-\gamma \eta_{j})} \phi_{j1} \left(\frac{1}{(1-\gamma \eta_{j})} \phi_{j1} \right) \frac{1}{(1-\gamma \eta_{j})} \phi_{j1} L_{jT1}^{1-\gamma \eta_{j}}.
\]

(A22)

In the case of China, one can use (A17) and (A21) to substitute for \(L_{jT1} \), thus rearranging (A22) as

\[
K_{chT1} = \Xi_{ch} \left(\frac{1}{l(L_{chT0}, K_{chT0}, K_{chN0}) K_{chT0}} \right)^{1-\alpha_{ch} \gamma_{ch} \eta_{ch}^{(1-\gamma \eta_{ch})}} \left(\frac{(1-\gamma \eta_{ch}) \phi_{ch}^{1-\gamma \eta_{ch}}}{\gamma_{ch} \phi_{ch} L_{chT1}^{1-\gamma \eta_{ch}} \frac{1}{(1-\gamma \eta_{ch})} \phi_{ch} L_{chT1}^{1-\gamma \eta_{ch}}} \right)^{(1-\gamma \eta_{ch})} \theta_{ch} \left(\frac{\gamma_{ch} D_{ch} K_{chN1}}{V_{ch1}} \right)^{(1-\gamma \eta_{ch})} \phi_{ch} \left(\frac{1}{(1-\gamma \eta_{ch})} \phi_{ch} \right) \frac{1}{(1-\gamma \eta_{ch})} \phi_{ch} L_{chT1}^{1-\gamma \eta_{ch}}.
\]

(A23)

where \(\Omega_{ch} \equiv \left(\frac{1}{\phi_{ch} \Psi_{ch}^{(1-\gamma \eta_{ch})}} \right)^{\frac{1}{(1-\gamma \eta_{ch})}} \phi_{ch} \Psi_{ch}^{(1-\gamma \eta_{ch})} \left(\frac{(1-\gamma \eta_{ch}) \phi_{ch}^{1-\gamma \eta_{ch}}}{\gamma_{ch} \phi_{ch} L_{chT1}^{1-\gamma \eta_{ch}} \frac{1}{(1-\gamma \eta_{ch})} \phi_{ch} L_{chT1}^{1-\gamma \eta_{ch}}} \right)^{(1-\gamma \eta_{ch})} \theta_{ch} \)

Finally, one can use (A2), (A21) and (A23) to rewrite (A17) as
\[\Gamma_{chT1} = \Lambda \left[\frac{1 - \alpha}{K_{chT0} \left(\frac{1 - \alpha}{1 - \gamma_n \alpha_n} \right)} \right]^{- \frac{1}{1 - \eta_n \alpha_n}} \], \quad \Lambda = \frac{\Theta_1}{\Phi_{ch0}} \left(\frac{\eta_n}{\left(\frac{1 - \gamma_n \alpha_n}{1 - \eta_n \alpha_n} \right)} \right)^{- \frac{1}{1 - \eta_n \alpha_n}}, \quad (A24) \]

and (A18) as
\[\frac{\text{GDP}_{ch0}}{P_{ch0}} + \theta_{ch} \frac{\text{GDP}_{ch1}}{P_{ch1}} = b(L_{chT0} \cdot K_{chT0} \cdot K_{chN0}), \]

where
\[b(L_{chT0} \cdot K_{chT0} \cdot K_{chN0}) = \left(\frac{\gamma_{ch}}{\alpha_{ch}} \right) \frac{\eta_n}{\eta_n \alpha_n} \left(\frac{L_{chT0} + \alpha_{ch} \Phi_{ch0}}{\gamma_{ch}} \right) \left(\frac{K_{chT0}}{1 - \eta_n \alpha_n} \right)^{1 - \frac{\eta_n}{\left(1 - \eta_n \alpha_n \right)}} + \frac{\alpha_{ch} \Phi_{ch1}}{\gamma_{ch} \Theta_1} \left(\frac{L_{chT0} + \alpha_{ch} \Phi_{ch1}}{\gamma_{ch} \Theta_1} \right)^{1 - \frac{\eta_n}{\left(1 - \eta_n \alpha_n \right)}} \]

Notice that we consider parameter values and initial conditions such that the presence of unemployment in China at time 0 \((L_{chT0} < L_{chT0} < L_{chT0}^+\)) implies that also at time 1 China will have unemployment
\[L_{chT1} < L_{chT1} = \Lambda \left[\frac{1 - \alpha}{K_{chT0} \left(\frac{1 - \alpha}{1 - \gamma_n \alpha_n} \right)} \right]^{- \frac{1}{1 - \eta_n \alpha_n}} \]

Moreover, these parameter values and initial conditions are such that \(L_{chT0}^+ < L_{chT0}^+ < L_{chT0}^+\), where \(L_{chT0}^+\) is the unique value of \(L_{chT0}\) minimizing
\[b(L_{chT0} \cdot K_{chT0} \cdot K_{chN0}). \]

Since it can be checked that
\[\frac{\partial b(L_{chT0} \cdot K_{chT0} \cdot K_{chN0})}{\partial L_{chT0}} < 0 \text{ if } L_{chT0} < L_{chT0} < L_{chT0}^+, \]
\[> 0 \text{ if } L_{chT0}^+ < L_{chT0} < L_{chT0}^+. \]

one can conclude that
\[\frac{\text{GDP}_{ch0}}{P_{ch0}} + \theta_{ch} \frac{\text{GDP}_{ch1}}{P_{ch1}} \]

is decreasing in \(L_{chT0}\) for \(L_{chT0} < L_{chT0} < L_{chT0}^+\) and increasing in \(L_{chT0}\) for \(L_{chT0}^+ < L_{chT0} < L_{chT0}^+.\)

7) Conditions under which i) \(\frac{\partial T_A}{\partial L_{chT0}} > 0\), ii) \(\frac{\partial L_{usT0}}{\partial L_{chT0}} < 0\), and iii) \(\frac{\partial C_{us0}}{\partial L_{usT0}} + \theta_{us} \frac{\partial C_{us1}}{\partial L_{usT0}} < 0\) hold
i) By using (3), (5), (7), (A2), (A9), (A21) and (A23), one can rewrite
\[
\frac{\text{TA}_{\text{ch0}}}{P_{\text{chT0}}} = Y_{\text{chT0}} - C_{\text{chT0}} - I_{\text{chT0}} - I_{\text{chN0}}
\]
as
\[
\frac{\text{TA}_{\text{ch0}}}{P_{\text{chT0}}} = r(L_{\text{chT0}} \cdot K_{\text{chT0}} \cdot K_{\text{chN0}}),
\]
where
\[
r(L_{\text{chT0}}, K_{\text{chT0}} \cdot K_{\text{chN0}}) = K_{\text{chT0}}^{\frac{1}{r_{\text{chT0}}}} \left[\frac{(1 - \eta_{\text{ch}}) \alpha_{\text{ch}}}{\eta_{\text{ch}} + \Psi_{\text{ch}}} \right] \Phi_{\text{ch0}} \frac{1}{K_{\text{chT0}}} \frac{1}{L_{\text{chT0}}} \frac{1}{\eta_{\text{ch}}(1 - \gamma_{\text{ch}})}
\]
and \(L_{\text{chT0}} \leq L_{\text{chT0}} \leq L_{\text{chT0}}^+.\)

Given \(\alpha_{\text{ch}} < \gamma_{\text{ch}}\), it is necessarily the case that \(\frac{\partial^2 r(L_{\text{chT0}} \cdot K_{\text{chT0}} \cdot K_{\text{chN0}})}{\partial L_{\text{chT0}}^2} < 0\). Hence,
\[
\frac{\partial r(L_{\text{chT0}} \cdot K_{\text{chT0}} \cdot K_{\text{chN0}})}{\partial L_{\text{chT0}}} > 0 \quad \text{if} \quad L_{\text{chT0}} = L_{\text{chT0}}^+ \quad \text{for any} \quad L_{\text{chT0}} \quad \text{such that} \quad L_{\text{chT0}}^+ \leq L_{\text{chT0}} \leq L_{\text{chT0}}^+.\)

Thus, parameter values and initial conditions consistent with
\[
\frac{\partial r(L_{\text{chT0}} \cdot K_{\text{chT0}} \cdot K_{\text{chN0}})}{\partial L_{\text{chT0}}} > 0 \quad \text{guarantee that} \quad \frac{\partial \text{TA}_{\text{ch0}}}{\partial L_{\text{chT0}}} > 0 \quad \text{holds for any} \quad L_{\text{chT0}} \quad \text{such that} \quad L_{\text{chT0}}^+ \leq L_{\text{chT0}} \leq L_{\text{chT0}}^+.
\]

ii) By using (3), (5), (7), (A2), (A9) and (A21), one can rewrite
\[
\frac{\text{TA}_{\text{us0}}}{P_{\text{usT0}}} = Y_{\text{usT0}} - C_{\text{usT0}} - I_{\text{usT0}} - I_{\text{usN0}}
\]
as
\[
\frac{\text{TA}_{\text{us0}}}{P_{\text{usT0}}} = K_{\text{usT0}}^{\frac{1}{r_{\text{usT0}}}} \left[\frac{(1 - \eta_{\text{us}}) \alpha_{\text{us}}}{\eta_{\text{us}} + \Psi_{\text{us}}} \right] \Phi_{\text{us0}} \frac{1}{K_{\text{usT0}}} \frac{1}{L_{\text{usT0}}} \frac{1}{\eta_{\text{us}}(1 - \gamma_{\text{us}})}
\]
and \(L_{\text{usT0}} \leq L_{\text{usT0}} \leq L_{\text{usT0}}^+.\) Notice that in (A27) we consider parameter values and initial conditions such that \(L_{\text{usT0}} \leq L_{\text{usT0}} \leq L_{\text{usT0}}^+\) entails \(L_{\text{usT1}} \leq L_{\text{usT1}} \leq L_{\text{usT1}}^+.\)
Considering that in equilibrium \(\frac{TA_{us0}}{P_{usT0}} + \frac{TA_{ch0}}{P_{chT0}} = 0 \), one can use (A26) and (A27) to obtain

\[
K_{usT1} = z(L_{usT0} \cdot K_{usT0} \cdot K_{usN0} \cdot L_{chT0} \cdot K_{chT0} \cdot K_{chN0}),
\]

where

\[
z(L_{usT0}, K_{usT0}, K_{usN0} \cdot L_{chT0}, K_{chT0}, K_{chN0}) = K_{usT0} L_{usT0} \cdot (1 - \delta_{us})(K_{usN0} + K_{usT0}) -
\]

\[
- \left[(1 - \eta_{us}) \alpha_{us} \frac{\psi_{us}}{\eta_{us} \gamma_{us}} + \Psi_{us} \right] \Phi_{us0} K_{usN0} \left(\frac{1}{\eta_{us} \gamma_{us}} \right)^{1 - \eta_{us} \gamma_{us}} + r(L_{chT0}, K_{chT0}, K_{chN0})
\]

and \(L_{usT0} \leq L_{usT0} \leq L_{usT0}^+ \). One can easily verify that \(\frac{\partial \gamma(\cdot)}{\partial L_{usT0}} > 0 \) and \(\frac{\partial \gamma(\cdot)}{\partial L_{chT0}} > 0 \) (since \(\frac{\partial r(L_{chT0}, K_{chT0}, K_{chN0})}{\partial L_{chT0}} > 0 \)). Moreover, by considering (A2) and (A22), one can use (A28) to obtain

\[
L_{usT1} = \left[z(L_{usT0}, K_{usT0}, K_{usN0} \cdot L_{chT0}, K_{chT0}, K_{chN0}) \right]^{-1} \left[\begin{array}{c}
1 - \eta_{us} \gamma_{us} \\
\Phi_{us0} K_{usN0} \\
\frac{1}{\eta_{us} \gamma_{us}} \\
K_{usT0} \\
\frac{1}{\eta_{us} \gamma_{us}}
\end{array} \right]
\]

(A29)

One can now use (A2), (A21), (A28) and (A29) to rewrite (A14) as

\[
\frac{TA_{us1}}{P_{usT1}} = Y_{usT1} \cdot C_{usT1} = \left[z(\cdot) \right]^{-1} \left[\begin{array}{c}
z(\cdot) \\
\Phi_{us0} K_{usN0} \\
\frac{1}{\eta_{us} \gamma_{us}} \\
K_{usT0} \\
\frac{1}{\eta_{us} \gamma_{us}}
\end{array} \right]
\]

(A30)

where \(L_{usT0} \leq L_{usT0} \leq L_{usT0}^+ \). One can check that

\[
\frac{\partial \frac{TA_{us1}}{P_{usT1}}}{\partial L_{usT0}} = \frac{\partial \gamma(\cdot)}{\partial L_{usT0}} \frac{Y_{usT1} \cdot C_{usT1}}{z(\cdot)} + \left[\frac{\alpha_{us} (1 - \eta_{us} \gamma_{us})}{[1 - \alpha_{us} - \eta_{us} (\gamma_{us} - \alpha_{us})]} \right]
\]

(A31)
By considering that \(\frac{\partial z(.)}{\partial L_{\text{us}T0}} > 0 \) and that the difference \(Y_{\text{us}T1} - C_{\text{us}T1} \) is relatively small with respect to both \(Y_{\text{us}T1} \) and \(C_{\text{us}T1} \), one can conclude that for relevant ranges of parameter values and initial conditions \(\frac{\partial TA_{\text{us}1}}{\partial L_{\text{us}T1}} > 0 \). A similar conclusion can be reached for China by using (A2), (A14), (A17), (A21) and (A23) to rewrite \(\frac{TA_{\text{ch}1}}{P_{\text{ch}T1}} \) as a function of \(L_{\text{ch}T0}, K_{\text{ch}N0} \) and \(K_{\text{ch}T0} \):

\[
\frac{TA_{\text{ch}1}}{P_{\text{ch}T1}} = Y_{\text{ch}T1} - C_{\text{ch}T1} = \left\{ \begin{array}{c}
\frac{\alpha_{\text{ch}T0}(1-\eta_{\text{ch}})}{(1-\eta_{\text{ch}})\alpha_{\text{ch}T0}} \frac{1}{\eta_{\text{ch}}}{\left(\frac{L_{\text{ch}T0} - \eta_{\text{ch}}}{\eta_{\text{ch}}} \right)} \left(1-\frac{\eta_{\text{ch}}}{\eta_{\text{ch}}} \right) \frac{1}{\eta_{\text{ch}}}{\left(\frac{L_{\text{ch}T0} - \eta_{\text{ch}}}{\eta_{\text{ch}}} \right)} \left(1-\frac{\eta_{\text{ch}}}{\eta_{\text{ch}}} \right)
\end{array} \right\} - \left(1-\frac{\eta_{\text{ch}}}{\eta_{\text{ch}}} \right) \left(1-\frac{\eta_{\text{ch}}}{\eta_{\text{ch}}} \right)
\]

\[
\text{(A32)}
\]

where \(L_{\text{ch}T0} \leq L_{\text{ch}T0} \leq L_{\text{ch}T0} \). Indeed, one can check that

\[
\frac{\partial TA_{\text{ch}1}}{\partial L_{\text{ch}T0}} = \frac{(1-\alpha_{\text{ch}})(1-\eta_{\text{ch}})Y_{\text{ch}T1}}{\alpha_{\text{ch}}\eta_{\text{ch}}(1-\gamma_{\text{ch}})(1-\eta_{\text{ch}})} \left(Y_{\text{us}T1} - C_{\text{us}T1} \right) + \frac{\alpha_{\text{ch}}(1-\gamma_{\text{us}}\eta_{\text{us}})}{1-\alpha_{\text{us}} - \eta_{\text{us}}(1-\gamma_{\text{us}}\eta_{\text{us}})} \left(Y_{\text{us}T1} - C_{\text{us}T1} \right) \left(1-\gamma_{\text{us}}\eta_{\text{us}} \right) \left(1-\gamma_{\text{us}}\eta_{\text{us}} \right)
\]

\[
\text{(A33)}
\]

Again, one can conclude that for relevant ranges of parameter values and initial conditions \(\frac{\partial TA_{\text{ch}1}}{\partial L_{\text{ch}T0}} > 0 \).

Finally, one can verify that

\[
\frac{\partial TA_{\text{us}1}}{\partial L_{\text{ch}T0}} = \frac{\partial z(.)}{\partial L_{\text{ch}T0}} \left(Y_{\text{us}T1} - C_{\text{us}T1} \right) + \frac{\alpha_{\text{us}}(1-\gamma_{\text{us}}\eta_{\text{us}})}{1-\alpha_{\text{us}} - \eta_{\text{us}}(1-\gamma_{\text{us}}\eta_{\text{us}})} \left(Y_{\text{us}T1} - C_{\text{us}T1} \right) \left(1-\gamma_{\text{us}}\eta_{\text{us}} \right) \left(1-\gamma_{\text{us}}\eta_{\text{us}} \right)
\]

\[
\text{(A34)}
\]

thus concluding that \(\frac{\partial TA_{\text{us}1}}{\partial L_{\text{ch}T0}} > 0 \).

Since in equilibrium \(\frac{TA_{\text{us}1}}{P_{\text{us}T1}} + \frac{TA_{\text{ch}1}}{P_{\text{ch}T1}} = 0 \), one can express \(L_{\text{us}T0} \) as an implicit function of \(L_{\text{ch}T0} \) and of the initial conditions: \(L_{\text{us}T0} = \alpha(L_{\text{ch}T0}, K_{\text{ch}N0}, K_{\text{ch}T0}, K_{\text{us}N0}, K_{\text{us}T0}) \), where \(\frac{TA_{\text{us}1}}{P_{\text{us}T1}} \) and \(\frac{TA_{\text{ch}1}}{P_{\text{ch}T1}} \) are given.
respectively, by (A30) and (A32) (similarly, one can express \(L_{rt} \) as an implicit function of \(L_{usT0} \) and of the initial conditions: \(L_{chT0} = m(L_{usT0}, K_{chN0}, K_{chT0}, K_{usN0}, K_{usT0}) \)). Considering (A31), (A33) and (A34), one can conclude that \(x_{L_{usT0}} < 0 \) (or that \(m_{L_{usT0}} < 0 \)), thus implying that given the equilibrium that will emerge in period 1 one has \(\frac{\partial L_{usT0}}{\partial L_{chT0}} < 0 \).

iii) By using (A2), (A15), (A21), (A28) and (A29), one can rewrite \(C_{us0} + \theta_{us} C_{us1} \) as

\[
\begin{align*}
\theta_{us} \Phi_{us1}^{\eta_{us}(1-\gamma_{us})} \left(\frac{1-\eta_{us}}{\eta_{us}^{\gamma_{us}}} \right) \left(1-\eta_{us} \right) \eta_{us}^{\gamma_{us}} (1-\gamma_{us}) \left[z(L_{usT0}, K_{usT0}, K_{usN0}, K_{chT0}, K_{chN0}) \right]^{\gamma_{us}} \\
+ \Phi_{us0}^{\eta_{us}(1-\gamma_{us})} \left(\frac{K_{usT0}}{L_{usT0}} \right)^{\gamma_{us}(1-\gamma_{us})} L_{usT0}^{\eta_{us}(1-\gamma_{us})} \left[z(L_{usT0}, K_{usT0}, K_{usN0}, K_{chT0}, K_{chN0}) \right]^{\gamma_{us}} \\
\end{align*}
\]

(A35)

where \(L_{usT0} \leq L_{usT0} \leq L_{usT0}^{+} \). As we know from (A15), the effect of a larger \(L_{usT0} \) on current consumption is negative, while its effect on next-period consumption is in principle ambiguous. Indeed, by inspecting (A35), one can observe that \(L_{usT0} \) affects \(C_{us1} \) through two channels: it has an indirect effect on it via its impact on \(K_{usT1} = \zeta(.) \) and a direct effect on it via its impact on \(\frac{K_{usT0}}{L_{usT0}} \). In its turn, a larger \(L_{usT0} \) determines an increase in \(K_{usT1} = \zeta(.) \) by boosting the domestic production of tradables in period 0, but this effect of a larger \(L_{usT0} \) on \(K_{usT1} \) tends to be offset by the reduction in that period of the US import of tradables from China \((z_{L_{usT0}} m_{L_{usT0}} < 0) \). In contrast, the direct effect of a larger \(L_{usT0} \) on \(C_{us1} \) is unambiguously negative for a country where households dedicate more than a modest fraction of their total consumer expenditures to the purchase of nontradables (which turns to be the case for the US), i.e., this effect is strictly negative if

\[
\eta_{us} > \frac{(2 + \gamma_{us})(1 - \alpha_{us})}{2[2\gamma_{us} - \alpha_{us}(1 + \gamma_{us})]} \left[\frac{[(2 + \gamma_{us})(1 - \alpha_{us})]^{2}}{4[2\gamma_{us} - \alpha_{us}(1 + \gamma_{us})]^{2}} \cdot \frac{(1 - \alpha_{us})}{[2\gamma_{us} - \alpha_{us}(1 + \gamma_{us})]} \right]^{\frac{1}{2}} < \frac{1}{2}.
\]

(A36)
Hence, we should expect that for relevant ranges of parameter values and initial conditions

\[\frac{\partial C_{u0}}{\partial L_{u0}} + \theta_{ul} C_{u1} < 0. \]
Elenco dei papers del Dipartimento di Economia
pubblicati negli ultimi due anni

2009.2 *Clusters of firms in space and time*, Giuseppe Arbia, Giuseppe Espa, Diego Giuliani e Andrea Mazzitelli

2009.3 *A note on maximum likelihood estimation of a Pareto mixture*, Marco Bee, Roberto Benedetti e Giuseppe Espa

2009.4 *Job performance and job satisfaction: an integrated survey*, Maurizio Pugno e Sara Depedri

2009.5 *The evolution of the Sino-American co-dependency: modeling a regime switch in a growth setting*, Luigi Bonatti e Andrea Fracasso

2009.6 *The Two Triangles: What did Wicksell and Keynes know about macroeconomics that modern economists do not (consider)?* Ronny Mazzocchi, Roberto Tamborini e Hans-Michael Trautwein

2009.7 *Mobility Systems and Economic Growth: a Theoretical Analysis of the Long-Term Effects of Alternative Transportation Policies*, Luigi Bonatti e Emanuele Campiglio

2009.8 *Money and finance: The heterodox views of R. Clower, A. Leijonhufvud and H. Minsky*, Elisabetta de Antoni

2009.9 *Development and economic growth: the effectiveness of traditional policies*, Gabriella Berloffa, Giuseppe Folloni e Ilaria Schnyder

2009.10 *Management of hail risk: insurance or anti-hail nets?*, Luciano Pilati, Vasco Boatto

2010.1 *Monetary policy through the "credit-cost channel". Italy and Germany pre- and post-EMU*, Giuliana Passamani, Roberto Tamborini

2010.2 *Has food price volatility risen?* Christopher L. Gilbert and C. Wyn Morgan

2010.3 *Simulating copula-based distributions and estimating tail probabilities by means of Adaptive Importance Sampling*, Marco Bee

2010.4 *The China-US co-dependency and the elusive costs of growth rebalancing*, Luigi Bonatti and Andrea Fracasso

2010.5 *The Structure and Growth of International Trade*, Massimo Riccaboni and Stefano Schiavo
2010.6 The Future of the Sino-American co-Dependency, Luigi Bonatti and Andrea Fracasso

2010.7 Anomalies in Economics and Finance, Christopher L. Gilbert

2010.8 Trust is bound to emerge (In the repeated Trust Game), Luciano Andreozzi

2010.9 Dynamic VaR models and the Peaks over Threshold method for market risk measurement: an empirical investigation during a financial crisis, Marco Bee e Fabrizio Miorelli

2010.10 Creativity in work settings and inclusive governance: Survey based findings from Italy, Silvia Sacchetti, Roger Sugden e Ermanno Tortia

2010.11 Food Prices in Six Developing Countries and the Grains Price Spike, Christopher L. Gilbert

2010.12 Weighting Ripley’s K-function to account for the firm dimension in the analysis of spatial concentration, Giuseppe espa, Diego Giuliani, Giuseppe Arbia

2010.13 I Would if I Could: Precarious Employment and Childbearing Intentions in Italy, Francesca Modena e Fabio Sabatini

2010.14 Measuring industrial agglomeration with inhomogeneous K-function: the case of ICT firms in Milan (Italy), Giuseppe espa, Giuseppe Arbia e Diego Giuliani

2010.15 Dualism and growth in transition economies: a two-sector model with efficient and subsidized enterprises, Luigi Bonatti e Kiryl Haiduk

2010.16 Intermediaries in International Trade: Direct Versus Indirect Modes of Export, Andrew B. Bernard, Marco Grazzi e Chiara Tomasi

2010.17 Production and Financial Linkages in inter-firm Networks: Structural Variety, Risk-sharing and Resilience, Giulio Cainelli, Sandro Montresor e Giuseppe Vittucci Marzetti

2010.18 Organizational Capital and Firm Performance. Empirical Evidence for European Firms, Claudia Tronconi e Giuseppe Vittucci Marzetti

2011.1 Leaving home and housing prices. The Experience of Italian youth emancipation, Francesca Modena and Concetta Rondinelli.
2011.2 Pareto versus lognormal: a maximum entropy test, Marco Bee, Massimo Riccaboni and Stefano Schiavo.

2011.3 Does a virtuous circle between social capital and CSR exist? A “network of games” model and some empirical evidence, Giacomo Degli Antoni e Lorenzo Sacconi

2011.4 The new rules of the Stability and Growth Pact. Threats from heterogeneity and interdependence, Roberto Tamborini

2011.5 Chinese reserves accumulation and US monetary policy: Will China go on buying US financial assets? Luigi Bonatti e Andrea Fracasso
Chinese reserves accumulation and US monetary policy: Will China go on buying US financial assets?

Luigi Bonatti, Andrea Fracasso